Solutions	Final exam in GRA 6035 Mathematics
Date	November 30th, 2022 at 1400-1700

Question 1.

(a) We use Gaussian elimination to find the rank of A :

$$
A=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & -1 & 1 & 1 \\
1 & 0 & 1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 0 & -1 & 1 \\
0 & -1 & 1 & 1 \\
0 & -1 & 0 & 2
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & -1 & 0 & 2 \\
0 & -1 & 1 & 1 \\
0 & 0 & -1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & -1 & 0 & 2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Since there are three pivot positions, we have that $\operatorname{rk}(A)=3$.
(b) Using the echelon form from (a), we see that $\operatorname{dim} \operatorname{Null}(A)=4-3=1$ and that w is a free variable. Back substitution gives that $-z+w=0$, or $z=w$, that $-y+z+w=-y+2 w=0$, or $y=2 w$, and that $x+y+z=x+2 w+w=0$, or $x=-3 w$. Hence $\operatorname{Null}(A)$ consists of the vectors of the form $(x, y, z, w)=(-3 w, 2 w, w, w)=w \cdot \mathbf{w}$ with $\mathbf{w}=(-3,2,1,1)$, and it follows that $\{\mathbf{w}\}$ is a base of $\operatorname{Null}(A)$ with $\mathbf{w}=(-3,2,1,1)$.
(c) We check if \mathbf{v} is an eigenvector of A by computing $A \mathbf{v}$ and try to write the product as $\lambda \mathbf{v}$:

$$
A \mathbf{v}=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & -1 & 1 & 1 \\
1 & 0 & 1 & 2
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{c}
2 \\
4 \\
-2 \\
2
\end{array}\right), \quad \lambda \mathbf{v}=\lambda \cdot\left(\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{c}
\lambda \\
2 \lambda \\
-\lambda \\
\lambda
\end{array}\right)
$$

Since $A \mathbf{v}=\lambda \mathbf{v}$ for $\lambda=2$, it follows that \mathbf{v} is an eigenvector of A with eigenvalue $\lambda=2$.
(d) Let U be the set of all vectors that are orthogonal to the null space of A. Any vector \mathbf{u} in U must be orthogonal to $\mathbf{w}=(-3,2,1,1)$, since \mathbf{w} is in $\operatorname{Null}(A)$. When we put $\mathbf{u}=(x, y, z, w)$, this means that

$$
\mathbf{u} \cdot \mathbf{w}=(x, y, z, w) \cdot(-3,2,1,1)=-3 x+2 y+z+w=0
$$

On the other hand, if \mathbf{u} is orthogonal to \mathbf{w}, then it is also orthogonal to any vector $w \cdot \mathbf{w}$ in $\operatorname{Null}(A), \operatorname{since} \mathbf{u} \cdot(w \cdot \mathbf{w})=w(\mathbf{u} \cdot \mathbf{w})=0$. Hence U consists of all solutions of the homogeneous linear system

$$
-3 x+2 y+z+w=0
$$

It is clear that there are three free variables, and that we may take any three variables as free, for example x, y, z (to simplify computations). This gives $w=3 x-2 y-z$ with x, y, z free, and the vectors in U are given as

$$
\mathbf{u}=(x, y, z, 3 x-2 y-z)=x \cdot(1,0,0,3)+y \cdot(0,1,0,-2)+z \cdot(0,0,1,-1)
$$

Therefore $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a base of U, with $\mathbf{u}_{1}=(1,0,0,3)$, $\mathbf{u}_{2}=(0,1,0,-2), \mathbf{u}_{3}=(0,0,1,-1)$. Alternatively, we could take y, z, w as free, and write $3 x=2 y+z+w$, or $x=2 y / 3+z / 3+w / 3$. Then the vectors in U can be written

$$
\mathbf{u}=(2 y / 3+z / 3+w / 3, y, z, w)=y / 3 \cdot(2,3,0,0)+z / 3 \cdot(1,0,3,0)+w / 3 \cdot(1,0,0,3)
$$

Therefore $\left\{\mathbf{u}_{1}^{\prime}, \mathbf{u}_{2}^{\prime}, \mathbf{u}_{3}^{\prime}\right\}$ is also a base of U, with $\mathbf{u}_{1}^{\prime}=(2,3,0,0), \mathbf{u}_{2}^{\prime}=(1,0,3,0), \mathbf{u}_{3}^{\prime}=(1,0,0,3)$.

Question 2.

(a) To determine the definiteness of the quadratic form q, we write down its symmetric matrix A :

$$
A=\left(\begin{array}{lll}
3 & 2 & 1 \\
2 & 4 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Its leading principal minors are $D_{1}=3, D_{2}=12-4=8$, and $D_{3}=1(2-4)-1(3-2)+1(8)=5$. Since all leading principal minors of A are positive, q is a positive definite quadratic form.
(b) We can think of $p(x, y, z)$ as a composite function $p(u)=u \cdot e^{u}$, with inner function or kernel $u(\mathbf{x})=1-q(\mathbf{x})$. We have that $H(u)=0-H(q)=-2 A$ is negative definite, since A is positive definite from (a), and therefore u is concave with $u_{\max }=u(\mathbf{0})=1$ at $\mathbf{x}=\mathbf{0}$. In particular, the range of u is $V_{u}=(-\infty, 1]$. The outer function $p(u)=u e^{u}$ has derivative

$$
p^{\prime}(u)=1 \cdot e^{u}+u \cdot e^{u}=(1+u) e^{u}
$$

This means that p in decreasing for $u \leq-1$ and that p is increasing for $u \geq-1$. Since we consider this function for all $u \leq 1$, we have that $p_{\min }=p(-1)=-1 \cdot e^{-1}=-1 / e \cong-0.37$. Since $p(u) \rightarrow 0$ when $u \rightarrow-\infty$ and $p(1)=1 \cdot e^{1}=e>0$, we see that $p_{\max }=p(1)=e \cong 2.71$.
(c) Since $\left(x^{*}, y^{*}, z^{*} ; \lambda^{*}\right)$ satisfies the Lagrange conditions, we can apply the second order condition (SOC). We consider the function

$$
h(x, y, z)=\mathcal{L}\left(x, y, z ; \lambda^{*}\right)=x+y+z-\lambda^{*}(q(x, y, z)-4)
$$

with Hessian $H(h)=0-\lambda^{*} \cdot(2 A-0)=-2 \lambda^{*} \cdot A$. Since A is positive definite, $H(h)$ is positive definite and h is convex if $\lambda^{*}<0$, and $H(h)$ is negative definite and h is concave if $\lambda^{*}>0$. By the SOC, we have that $\left(x^{*}, y^{*}, z^{*}\right)$ is a minimum point when $\lambda^{*}<0$ and a maximum point when $\lambda^{*}>0$. Therefore statements (B) and (C) are true and statements (A) and (D) are false.
(d) Let B be the row vector $B=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$ and let A be the symmetric matrix of the quadratic form q, given in (a). We can write $f(\mathbf{x})=B \mathbf{x}$ and $q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$ in matrix form, and write the Lagrangian as $\mathcal{L}=B \mathbf{x}-\lambda\left(\mathbf{x}^{T} A \mathbf{x}-4\right)$. Then the first order conditions (FOC) can be written $\mathcal{L}^{\prime}(\mathbf{x})=B^{T}-\lambda \cdot 2 A \mathbf{x}=\mathbf{0}$, and the constraint can be written $\mathbf{x}^{T} A \mathbf{x}=4$. From the FOC's, we get $2 \lambda A \mathbf{x}=B^{T}$. Since $\lambda=0$ does not give solutions, we can write this as

$$
A \mathbf{x}=\frac{1}{2 \lambda} \cdot B^{T}=s \cdot B^{T}=s\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
s \\
s \\
s
\end{array}\right)
$$

with $s=1 /(2 \lambda)$. Alternative 1. We use Gaussian elimination to solve the linear system:

$$
\left(\begin{array}{ccc|c}
3 & 2 & 1 & s \\
2 & 4 & 1 & s \\
1 & 1 & 1 & s
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 1 & 1 & s \\
3 & 2 & 1 & s \\
2 & 4 & 1 & s
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 1 & 1 & s \\
0 & -1 & -2 & -2 s \\
0 & 2 & -1 & -s
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 1 & 1 & s \\
0 & -1 & -2 & -2 s \\
0 & 0 & -5 & -5 s
\end{array}\right)
$$

Back substitution gives $-5 z=-5 s$, or $z=s,-y-2 s=-2 s$, or $y=0$, and $x+0+s=s$, or $x=0$. We find that $(x, y, z)=(0,0, s)$, and the constraint gives $q(0,0, s)=s^{2}=4$, or $s= \pm 2$, and $\lambda=1 /(2 s)= \pm 1 / 4$. Alternative 2. We use that $|A|=D_{3}=5 \neq 0$ from (a), hence the matrix A is invertible, and we find that $\mathbf{x}=A^{-1}\left(s B^{T}\right)=s A^{-1} B^{T}$. We put this into the constraint $\mathbf{x}^{T} A \mathbf{x}=4$, and find that

$$
\mathbf{x}^{T} A \mathbf{x}=\left(s A^{-1} B^{T}\right)^{T} A\left(s A^{-1} B^{T}\right)=s^{2}\left(B\left(A^{-1}\right)^{T} A A^{-1} B^{T}\right)=s^{2}\left(B A^{-1} B^{T}\right)=4
$$

We have used that A^{-1} is symmetric since A is symmetric, which means that $\left(A^{-1}\right)^{T}=A^{-1}$. We compute A^{-1} using cofactors, and the fact that A is symmetric and therefore the cofactor matrix of A is symmetric. This gives the following expressions for A^{-1} and $B A^{-1} B^{T}$:

$$
\begin{aligned}
A^{-1}=\frac{1}{5}\left(\begin{array}{ccc}
3 & -1 & -2 \\
-1 & 2 & -1 \\
-2 & -1 & 8
\end{array}\right) \Rightarrow B A^{-1} B^{T} & =\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) \cdot \frac{1}{5}\left(\begin{array}{ccc}
3 & -1 & -2 \\
-1 & 2 & -1 \\
-2 & -1 & 8
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
0 \\
5
\end{array}\right)=\frac{5}{5}=1
\end{aligned}
$$

It follows that the constraint is $s^{2} \cdot 1=4$, which gives $s= \pm 2$, and $\lambda=1 /(2 s)= \pm 1 / 4$. Therefore

$$
\mathbf{x}=s A^{-1} B^{T}=s \cdot \frac{1}{5}\left(\begin{array}{ccc}
3 & -1 & -2 \\
-1 & 2 & -1 \\
-2 & -1 & 8
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=s \cdot \frac{1}{5}\left(\begin{array}{l}
0 \\
0 \\
5
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
s
\end{array}\right)
$$

With either of the two methods, we find two candidate points $(0,0,2 ; 1 / 4)$ with $f(0,0,2)=2$ and $(0,0,-2 ;-1 / 4)$ with $f(0,0,-2)=-2$. We use the results in (c), and find that $f_{\max }=2$ at $(x, y, z)=(0,0,2)$ with $\lambda=1 / 4$, and $f_{\text {min }}=-2$ at $(x, y, z)=(0,0,-2)$ with $\lambda=-1 / 4$.

Question 3.

(a) The characteristic equation of the homogeneous differential equation $4 y^{\prime \prime}+4 y^{\prime}-3 y=0$ is $4 r^{2}+4 r-3=0$, which gives

$$
r=\frac{-4 \pm \sqrt{4^{2}-4 \cdot 4(-3)}}{2 \cdot 4}=\frac{-4 \pm \sqrt{64}}{8}=\frac{-4 \pm 8}{8}
$$

Hence there are two distinct characteristic roots $r_{1}=4 / 8=1 / 2$ and $r_{2}=-12 / 8=-3 / 2$, and the general homogeneous solution is

$$
y_{h}=C_{1} e^{t / 2}+C_{2} e^{-3 t / 2}
$$

To find a particular solution of $4 y^{\prime \prime}+4 y^{\prime}-3 y=8+8 t-3 t^{2}$, we use the method of undetermined coefficients with $y=A t^{2}+B t+C$, which gives $y^{\prime}=2 A t+B$ and $y^{\prime \prime}=2 A$. When we substitute this into the differential equation, we get $4(2 A)+4(2 A t+B)-3\left(A t^{2}+B t+C\right)=8+8 t-3 t^{2}$, which gives $-3 A=-3,8 A-3 B=8$, and $8 A+4 B-3 C=8$ by comparing coefficients. Hence $A=1, B=0$, and $C=0$, which gives $y_{p}=t^{2}$. The general solution of the differential equation is

$$
y=y_{h}+y_{p}=C_{1} e^{t / 2}+C_{2} e^{-3 t / 2}+t^{2}
$$

(b) We write $\mathbf{y}_{t}=\left(u_{t}, v_{t}\right)$ for $t=0,1,2, \ldots$ such that the system of difference equations can be written $\mathbf{y}_{t+1}=A \mathbf{y}_{t}$ with

$$
A=\left(\begin{array}{ll}
0.7 & 0.8 \\
0.4 & 0.3
\end{array}\right)
$$

The eigenvalues of A are given by the characteristic equation $\lambda^{2}-\lambda-0.11=0$ since $\operatorname{tr}(A)=1$ and $\operatorname{det}(A)=0.21-0.32=-0.11$. This gives

$$
\lambda=\frac{1 \pm \sqrt{(-1)^{2}-4(-0.11)}}{2}=\frac{1 \pm \sqrt{1.44}}{2}=\frac{1 \pm 1.2}{2}
$$

and the two eigenvalues are $\lambda_{1}=1.1$ and $\lambda_{2}=-0.1$. To find a base $\left\{\mathbf{v}_{i}\right\}$ for $E_{\lambda_{i}}$ in each case, we use the Gaussian processes

$$
E_{1.1}:\left(\begin{array}{cc}
-0.4 & 0.8 \\
0.4 & -0.8
\end{array}\right) \rightarrow\left(\begin{array}{cc}
-1 & 2 \\
0 & 0
\end{array}\right) \quad E_{-0.1}:\left(\begin{array}{cc}
0.8 & 0.8 \\
0.4 & 0.4
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)
$$

and back substitution, and find base vectors $\mathbf{v}_{1}=(2,1)$ and $\mathbf{v}_{2}=(-1,1)$ for the two eigenspaces. Hence the general solution of the system of difference equations is

$$
\mathbf{y}_{t}=\binom{u_{t}}{v_{t}}=C_{1}\binom{2}{1} \cdot 1.1^{t}+C_{2}\binom{-1}{1} \cdot(-0.1)^{t}=\binom{2 C_{1} \cdot 1.1^{t}-C_{2}(-0.1)^{t}}{C_{1} \cdot 1.1^{t}+C_{2}(-0.1)^{t}}
$$

(c) We write $2 t y^{2}-4 y+\left(2 t^{2} y-4 t\right) y^{\prime}=0$ as $p+q \cdot y^{\prime}=0$, and see that this differential equation is exact if there is a function $h=h(t, y)$ such that $h_{t}^{\prime}=p=2 t y^{2}-4 y$ and $h_{y}^{\prime}=q=2 t^{2} y-4 t$. From the first condition, we obtain $h=t^{2} y^{2}-4 t y+C(y)$, and substituting this into the second condition, we get $h_{y}^{\prime}=2 t^{2} y-4 t+C^{\prime}(y)=2 t^{2} y-4 t$. We see that $C(y)=0$ gives the solution $h=t^{2} y^{2}-4 t y$. This means that the differential equation is exact, and that its general solution is given by $t^{2} y^{2}-4 t y=C$. The initial condition $y(1)=5$ gives $1^{2} \cdot 5^{2}-4 \cdot 1 \cdot 5=C$, or $C=5$. This gives

$$
t^{2} y^{2}-4 t y=5 \quad \Rightarrow \quad t^{2} y^{2}-4 t y-5=(t y+1)(t y-5)=0
$$

The explicit solutions are therefore $y=-1 / t$ or $y=5 / t$, and since we have $y(1)=5$, the particular solution is $y=5 / t$.
(d) We use the hint to find homogeneous solutions: If $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. We substitute these expressions into the homogeneous equation $t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y=0$:

$$
t^{2}\left(r(r-1) t^{r-2}\right)+4 t\left(r t^{r-1}\right)+2\left(t^{r}\right)=\left(r^{2}-r+4 r+2\right) t^{r}=\left(r^{2}+3 r+2\right) t^{r}=0
$$

This means that $y=t^{r}$ is a homogeneous solution if and only if $r^{2}+3 r+2=0$, which gives $r=-1$ and $r=-2$. The general homogeneous solution is therefore

$$
y_{h}=C_{1} \cdot t^{-1}+C_{2} \cdot t^{-2}=\frac{C_{1} \cdot t+C_{2}}{t^{2}}
$$

We use the method of undetermined coefficients to find a particular solution, and use $y=A$ since the right-hand side of $t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y=6$ is a constant. If $y=A$, then $y^{\prime}=y^{\prime \prime}=0$, and when we substitute this into the differential equation, we get $t^{2}(0)+4 t(0)+2(A)=6$, or $A=3$. Hence $y_{p}=3$ and the general solution of the differential equation is

$$
y=y_{h}+y_{p}=\frac{C_{1} \cdot t+C_{2}}{t^{2}}+3=\frac{C_{1} \cdot t+C_{2}+3 t^{2}}{t^{2}}
$$

