Exam	Final exam in GRA 6035 Mathematics
Date	April 29th, 2022 at $1300-1600$

This exam consists of $12+1$ problems (one additional problem is for extra credits, and can be skipped). Each problem has a maximal score of 6 p, and 72 p (12 solved problems) is marked as 100% score.

You must give reasons for your answers. Precision and clarity will be emphasized when evaluating your answers.

Question 1.

We consider the matrix A given by

$$
A=\left(\begin{array}{ccc}
2 & -4 & -11 \\
-2 & 3 & 10 \\
1 & -4 & -10
\end{array}\right)
$$

(a) ($\mathbf{6 p} \mathbf{p})$ Compute the determinant and rank of A.
(b) (6p) Find a base of $\operatorname{Null}(A-I)$.
(c) (6p) Show that $\lambda=1, \lambda=-5$ and $\lambda=-1$ are eigenvalues of A.
(d) $(\mathbf{6 p})$ Find a matrix P such that $P^{-1} A P$ is diagonal, if it is possible.

Question 2.

(a) (6p) Solve the differential equation $y^{\prime \prime}-3 y^{\prime}+2 y=6 e^{-t}$.
(b) (6p) Solve the differential equation $t y^{\prime}+y=1$.
(c) $(\mathbf{6 p})$ Solve the differential equation $2 t y^{\prime}+y^{2}=1$.
(d) $\mathbf{(6 p)}$) Find the equilibrium state of the system of differential equations. Is it stable?

$$
\mathbf{y}^{\prime}=\left(\begin{array}{ccc}
2 & -4 & -11 \\
-2 & 3 & 10 \\
1 & -4 & -10
\end{array}\right) \cdot \mathbf{y}+\left(\begin{array}{c}
-3 \\
2 \\
-1
\end{array}\right)
$$

Question 3.

We consider the function f given by $f(x, y, z)=4 y-2 x^{2}-3 z^{2}-2 x y-8 x z$ and the Lagrange problem given by

$$
\max f(x, y, z) \text { subject to } g(x, y, z)=x^{2}+y^{2}+4 z^{2}+4 y z=2
$$

(a) (6p) Find all stationary points of f and classify them.
(b) (6p) Write down the Lagrange conditions of the Lagrange problem.
(c) $(6 p)$ Find all points $(x, y, z ; \lambda)$ with $\lambda=1$ that satisfy the Lagrange conditions.
(d) (6p) Solve the Lagrange problem.
(e) Extra credit (6p) Find a linear change of variables $\mathbf{x}=P \mathbf{u}$ such that the constraint $g(\mathbf{x})=2$ takes the form $\lambda_{1} u_{1}^{2}+\lambda_{2} u_{2}^{2}+\lambda_{3} u_{3}^{2}=2$, and use this to describe the set of admissible points.

