```
Solutions Final exam in GRA 6035 Mathematics
Date January 28th, 2022 at 1300-1600
```


Question 1.

(a) We compute the determinant of A using cofactor expansion along the second column:

$$
|A|=\left|\begin{array}{cccc}
3 & 0 & 0 & 1 \\
0 & 2 & 4 & 4 \\
-1 & 0 & -2 & -5 \\
1 & 0 & 0 & 3
\end{array}\right|=2 \cdot\left|\begin{array}{ccc}
3 & 0 & 1 \\
-1 & -2 & -5 \\
1 & 0 & 3
\end{array}\right|
$$

We compute the 3-minor by cofactor expansion along the middle column, and this gives

$$
|A|=2 \cdot(-2) \cdot(9-1)=-4 \cdot 8=-32
$$

(b) Since A is a 4×4 matrix with $|A| \neq 0$, we have that $\operatorname{rk}(A)=4$. This means that

$$
\operatorname{dim} \operatorname{Col}(A)=\operatorname{rk}(A)=4, \quad \operatorname{dim} \operatorname{Null}(A)=4-\operatorname{rk}(A)=0
$$

(c) We solve the linear system $(A-2 I) \mathbf{x}=\mathbf{0}$, to simultaneously check that $\lambda=2$ is an eigenvalue and to find a base of E_{2} :

$$
A-2 I=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 0 & 4 & 4 \\
-1 & 0 & -4 & -5 \\
1 & 0 & 0 & 1
\end{array}\right) \quad \rightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 0 & 4 & 4 \\
0 & 0 & -4 & -4 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 0 & 4 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

We see that there are two free variables x_{2} and x_{4}, hence $\lambda=2$ is an eigenvalue and $\operatorname{dim} E_{2}=2$. We solve the linear system using back substitution, and find $x_{3}=-x_{4}$ and $x_{1}=-x_{4}$. The solutions are therefore given by

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-x_{4} \\
x_{2} \\
-x_{4} \\
x_{4}
\end{array}\right)=x_{2}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
-1 \\
0 \\
-1 \\
1
\end{array}\right)
$$

It follows that the vectors $\mathbf{v}_{1}=(0,1,0,0), \mathbf{v}_{2}=(-1,0,-1,1)$ form a base of E_{2}.
(d) The eigenvalues of A are the solutions of the characteristic equation $|A-\lambda I|=0$, and we compute the determinant on the left-hand side by cofactor expansion along the second column:

$$
|A-\lambda I|=\left|\begin{array}{cccc}
3-\lambda & 0 & 0 & 1 \\
0 & 2-\lambda & 4 & 4 \\
-1 & 0 & -2-\lambda & -5 \\
1 & 0 & 0 & 3-\lambda
\end{array}\right|=(2-\lambda) \cdot\left|\begin{array}{ccc}
3-\lambda & 0 & 1 \\
-1 & -2-\lambda & -5 \\
1 & 0 & 3-\lambda
\end{array}\right|
$$

We compute the resulting 3 -minor using cofactor expansion along the second column, and write the characteristic equation in the form

$$
(2-\lambda) \cdot\left|\begin{array}{ccc}
3-\lambda & 0 & 1 \\
-1 & -2-\lambda & -5 \\
1 & 0 & 3-\lambda
\end{array}\right|=(2-\lambda)(-2-\lambda) \cdot\left|\begin{array}{cc}
3-\lambda & 1 \\
1 & 3-\lambda
\end{array}\right|=0
$$

This gives $\lambda=2, \lambda=-2$, or $\lambda^{2}-6 \lambda+8=0$, which gives $\lambda=2$ or $\lambda=4$. We conclude that the eigenvalues of A are $\lambda_{1}=\lambda_{2}=2, \lambda_{3}=4, \lambda_{4}=-2$.

Question 2.

(a) We use superposition to solve the linear difference equation $6 y_{t+2}+y_{t+1}-y_{t}=6 t+1$: To find the homogeneous solution y_{t}^{h}, we consider the characteristic equation $6 r^{2}+r-1=0$, with two distinct roots $r=1 / 3, r=-1 / 2$, and therefore

$$
y_{t}^{h}=C_{1}\left(\frac{1}{3}\right)^{t}+C_{2}\left(-\frac{1}{2}\right)^{t}
$$

To find a particular solution y_{t}^{p}, we consider the difference equation $6 y_{t+2}+y_{t+1}-y_{t}=6 t+1$. We try to find a constant solution $y_{t}=A t+B$, which gives $y_{t+1}=A(t+1)+B=A t+A+B$,
and $y_{t+2}=A(t+2)+B=A t+2 A+B$. When we substitute this into the difference equation, we get

$$
\begin{aligned}
6(A t+2 A+B)+(A t+A+B)-(A t+B) & =6 t+1 \\
(6 A) t+(13 A+6 B) & =6 t+1
\end{aligned}
$$

Comparing coefficients, we find $6 A=6$, or $A=1$, and $13 A+6 B=1$, or $6 B=1-13=-12$, which gives $B=-2$. The general solution is therefore given by

$$
y_{t}=y_{t}^{h}+y_{t}^{p}=C_{1}\left(\frac{1}{3}\right)^{t}+C_{2}\left(-\frac{1}{2}\right)^{t}+t-2
$$

(b) The differential equation $t y^{\prime}-2 y=t^{2}$ can be written $y^{\prime}-(2 / t) y=t$, and is linear. Since $\int-(2 / t) \mathrm{d} t=-2 \ln |t|+C$, the integrating factor is $u=e^{-2 \ln |t|}=|t|^{-2}=1 / t^{2}$. Multiplication with the integrating factor gives the differential equation

$$
\left(\frac{1}{t^{2}} \cdot y\right)^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \frac{1}{t^{2}} \cdot y=\int 1 / t \mathrm{~d} t=\ln |t|+C
$$

Therefore, the differential equation has general solution $y=t^{2} \cdot \ln |t|+C t^{2}$.
(c) We write $y^{2}-3 t^{2} y+\left(2 t y-t^{3}\right) y^{\prime}=0$ in the form $p(t, y)+q(t, y) y^{\prime}=0$ to check if it is exact: We look for a function $h(t, y)$ in two variables such that

$$
\begin{aligned}
h_{t}^{\prime} & =p(t, y) \\
h_{y}^{\prime} & =q(t, y)=2 t y-3 t^{2} y \\
& =2 t y-t^{3}
\end{aligned}
$$

We see that $h(t, y)=y^{2} t-t^{3} y$ satisfies both conditions, therefore the differential equation is exact, and its general solution can be written in the form $h(t, y)=y^{2} t-t^{3} y=C$. The implicit form of the solution can be written $t y^{2}-t^{3} y-C=0$, and we use the quadratic formula to solve it for y :

$$
y=\frac{t^{3} \pm \sqrt{t^{6}-4 t(-C)}}{2 t}=\frac{t^{2}}{2} \pm \frac{\sqrt{t^{6}+4 C t}}{2 t}=\frac{1}{2}\left(t^{2} \pm \sqrt{t^{4}+4 C / t}\right)
$$

(d) We let A be the 3×3 matrix such that the system of difference equations can be written in the form $\mathbf{y}_{t+1}=A \mathbf{y}_{t}$. The eigenvalues of A is given the characteristic equation

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
2-\lambda & 1 & 1 \\
-1 & 2-\lambda & 0 \\
3 & -1 & 1-\lambda
\end{array}\right|=0
$$

We use cofactor expansion along the second row to compute the determinant, and get

$$
+1 \cdot(1-\lambda+1)+(2-\lambda)((2-\lambda)(1-\lambda)-3)=(2-\lambda)\left(1+\lambda^{2}-3 \lambda+2-3\right)
$$

This gives the characteristic equation $(2-\lambda)\left(\lambda^{2}-3 \lambda\right)=-\lambda(\lambda-2)(\lambda-3)=0$, and there are three distinct eigenvalues $\lambda_{1}=0, \lambda_{2}=2$, and $\lambda_{3}=3$. This means that A is diagonalizable. We find a base $\left\{\mathbf{v}_{i}\right\}$ for $E_{\lambda_{i}}$ in each case: We use the Gaussian processes
$E_{0}:\left(\begin{array}{ccc}2 & 1 & 1 \\ -1 & 2 & 0 \\ 3 & -1 & 1\end{array}\right) \rightarrow\left(\begin{array}{ccc}-1 & 2 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 0\end{array}\right)$
$E_{2}:\left(\begin{array}{ccc}0 & 1 & 1 \\ -1 & 0 & 0 \\ 3 & -1 & -1\end{array}\right) \rightarrow\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right)$
$E_{3}:\left(\begin{array}{ccc}-1 & 1 & 1 \\ -1 & -1 & 0 \\ 3 & -1 & -2\end{array}\right) \rightarrow\left(\begin{array}{ccc}-1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 0\end{array}\right)$
and back substitution, and find base vectors $\mathbf{v}_{1}=(-2,-1,5), \mathbf{v}_{2}=(0,-1,1), \mathbf{v}_{3}=(1,-1,2)$ for the three eigenspaces. The general solution is therefore given by

$$
\mathbf{y}_{t}=C_{1} \mathbf{v}_{1} \lambda_{1}^{t}+C_{2} \mathbf{v}_{2} \lambda_{2}^{t}+C_{3} \mathbf{v}_{3} \lambda_{3}^{t}=C_{1}\left(\begin{array}{c}
-2 \\
-1 \\
5
\end{array}\right) \cdot 0^{t}+C_{2}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) \cdot 2^{t}+C_{3}\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right) \cdot 3^{t}
$$

where $0^{t}=1$ if $t=0$ and $0^{t}=0$ if $t>0$ is a positive integer.

Question 3.

(a) We write f on matrix form $f(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}+B \mathbf{x}$, where

$$
A=\left(\begin{array}{ccc}
-1 & -1 & 0 \\
-1 & 0 & -2 \\
0 & -2 & -4
\end{array}\right), \quad B=\left(\begin{array}{lll}
6 & 6 & 6
\end{array}\right)
$$

To find the stationary points, we solve the first order conditions $f^{\prime}(\mathbf{x})=2 A \mathbf{x}+B^{T}=\mathbf{0}$, or $A \mathbf{x}=-1 / 2 \cdot B^{T}$. This gives a linear system, and we solve it using Gaussian elimination:

$$
\left(\begin{array}{rrr|r}
-1 & -1 & 0 & -3 \\
-1 & 0 & -2 & -3 \\
0 & -2 & -4 & -3
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
-1 & -1 & 0 & -3 \\
0 & 1 & -2 & 0 \\
0 & -2 & -4 & -3
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
-1 & -1 & 0 & -3 \\
0 & 1 & -2 & 0 \\
0 & 0 & -8 & -3
\end{array}\right)
$$

Back substitution gives $-9 z=-3$ or $z=3 / 8, y=2(3 / 8)=3 / 4$, and that $-x=3 / 4-3=-9 / 4$ or $x=9 / 4$. Hence $\mathbf{x}^{*}=(9 / 4,3 / 4,3 / 8)$ is the unique stationary point f. To classify it, notice that A is indefinite since $D_{2}=-1$. This means that $H(f)\left(\mathbf{x}^{*}\right)=2 A$ is also indefinite, and $\mathbf{x}^{*}=(9 / 4,3 / 4,3 / 8)$ is a saddle point for f by the second derivative test.
(b) The Kuhn-Tucker problem is in standard form with Lagrangian $\mathcal{L}=\mathbf{x}^{T} A \mathbf{x}+B \mathbf{x}-\lambda\left(\mathbf{x}^{T} D \mathbf{x}-9\right)$, where D is the symmetric matrix of the quadratic form g, given by

$$
D=\left(\begin{array}{lll}
2 & 0 & 4 \\
0 & 1 & 0 \\
4 & 0 & 3
\end{array}\right)
$$

The first order conditions (FOC) can therefore be written $\mathcal{L}^{\prime}(\mathbf{x})=2 A \mathbf{x}+B^{T}-\lambda(2 D \mathbf{x})=\mathbf{0}$, the constraint (C) can be written $\mathbf{x}^{T} D \mathbf{x} \leq 9$, and the complementary slackness conditions can be written $\lambda \geq 0$ and $\lambda\left(\mathbf{x}^{T} D \mathbf{x}-9\right)=0$. Together, the conditions FOC $+\mathrm{C}+\mathrm{CSC}$ are the Kuhn-Tucker conditions of the problem:

$$
\mathrm{FOC}+\mathrm{C}+\mathrm{CSC}: \quad 2 A \mathrm{x}+B^{T}-\lambda(2 D \mathbf{x})=\mathbf{0}, \mathbf{x}^{T} D \mathrm{x} \leq 9, \lambda \geq 0, \lambda\left(\mathbf{x}^{T} D \mathbf{x}-9\right)=0
$$

(c) When $\lambda=1$, the first order conditions are $2 A \mathbf{x}+B^{T}-2 D \mathbf{x}=\mathbf{0}$, or $(A-D) \mathbf{x}=-1 / 2 \cdot B^{T}$. This is a linear system, and we solve it using Gaussian elimination (where the first step is to subtract the last row from the first to simplify computations):

$$
\left(\begin{array}{rrr|r}
-3 & -1 & -4 & -3 \\
-1 & -1 & -2 & -3 \\
-4 & -2 & -7 & -3
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & -1 & 0 & -3 \\
-1 & -1 & -2 & -3 \\
-4 & -2 & -7 & -3
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & -1 & 0 & -3 \\
0 & -2 & -2 & -6 \\
0 & -6 & -7 & -15
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & -1 & 0 & -3 \\
0 & -2 & -2 & -6 \\
0 & 0 & -1 & 3
\end{array}\right)
$$

Back substitution gives $-z=3$ or $z=-3,-2 y=2(-3)-6=-12$ or $y=6$, and that $x=6-3=3$. We get the solution $(x, y, z ; \lambda)=(3,6,-3 ; 1)$ of the FOC. We see that the constraint is binding since

$$
g(3,6,-3)=2(3)^{2}+6^{2}+3(-3)^{2}+8(3)(-3)=9
$$

at this point, and that the CSC is satisfied since $\lambda>0$. We conclude that there is one candidate point $(x, y, z ; \lambda)=(3,6,-3 ; 1)$ with $\lambda=1$ that satisfies the Kuhn-Tucker conditions.
(d) We use the second order condition (SOC) to test the candidate point $(x, y, z ; \lambda)=(3,6,-3 ; 1)$, and therefore consider the function

$$
h(\mathbf{x})=\mathcal{L}(\mathbf{x} ; 1)=2 A \mathbf{x}+B^{T}-2 D \mathbf{x}=2(A-D) \mathbf{x}+B^{T}
$$

We notice that h is a quadratic function with Hessian $H(h)=2(A-D)$, and that $H(h)$ has the same definiteness as

$$
A-D=\left(\begin{array}{lll}
-3 & -1 & -4 \\
-1 & -1 & -2 \\
-4 & -2 & -7
\end{array}\right)
$$

We compute the principal minors of $A-D$: We have $D_{1}=-3, D_{2}=3-1=2$, and that $D_{3}=-3(7-4)+1(7-8)-4(2-4)=-2$. We conclude that $A-D$, and therefore $H(h)=2(A-D)$, is negative definite, and it follows that h is a concave function. By the SOC, it follows that $(x, y, z)=(3,6,-3)$ is a maximizer in the Kuhn-Tucker problem, and that $f_{\text {max }}=f(3,6,-3)=27$ is the maximum value.
(e) We have that $g(x, y, z)$ can be written as a sum of the quadratic forms $2 x^{2}+3 z^{2}+8 x z$ and y^{2}. We see that the second one is positive definite, while the first is indefinite. This means that D is not bounded, and therefore not compact. For example, we can let $y=0$ and $z=-x$. Then the constraint

$$
g(x, y, z)=2 x^{2}+3(-x)^{2}+8 x(-x)=5 x^{2}-8 x^{2}=-3 x^{2} \leq 9
$$

is satisfied for all values of x, and this means that there in no upper or lower bound on x for admissible points (x, y, z) in D.

