This exam consists of $12+1$ problems (one additional problem is for extra credits, and can be skipped). Each problem has a maximal score of 6 p, and 72 p (12 solved problems) is marked as 100% score.

You must give reasons for your answers. Precision and clarity will be emphasized when evaluating your answers.

Question 1.

We consider the matrix A and the vector \mathbf{v} given by

$$
A=\left(\begin{array}{cccc}
1 & 0 & 2 & 1 \\
3 & 2 & 0 & -1 \\
4 & 2 & 2 & 0 \\
1 & -2 & 8 & 5
\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{c}
-1 \\
0 \\
2 \\
-3
\end{array}\right)
$$

(a) (6p) Compute the rank of A, and find a base of the column space of A.
(b) $(\mathbf{6 p})$ Show that \mathbf{v} is an eigenvector of A, and find the corresponding eigenvalue.
(c) $(\mathbf{6 p})$ Find the determinant of A.

Let S be a symmetric 3×3 matrix with eigenvalues $\lambda=1, \lambda=2$ and $\lambda=4$.
(d) $(6 \mathbf{p})$ Show that S has an inverse matrix, and determine the definiteness of S^{-1}.

Question 2.

(a) $\mathbf{(6 p)}$ Solve the differential equation $y^{\prime \prime}+y^{\prime}=6 e^{3 t}$.
(b) (6p) Solve the differential equation $t\left(y^{\prime}-y\right)=y$.
(c) $\mathbf{(6 p)}$ Solve the difference equation $y_{t+2}+3 y_{t+1}-4 y_{t}=5$.
(d) (6p) Solve the system of differential equations:

$$
\mathbf{y}^{\prime}=\left(\begin{array}{ccc}
1 & 1 & 2 \\
-1 & 0 & 1 \\
0 & 1 & 3
\end{array}\right) \cdot \mathbf{y}, \quad \mathbf{y}(0)=\left(\begin{array}{c}
5 \\
-5 \\
3
\end{array}\right)
$$

Question 3.

Let $g(x, y, z, w)=3 x^{2}+2 x y+8 x z-2 x w+y^{2}+4 y z+2 y w+7 z^{2}+4 w^{2}$, and consider the Kuhn-Tucker problem given by

$$
\max f(x, y, z)=x+y+z+w \text { subject to } g(x, y, z, w) \leq 18
$$

(a) (6p) Determine the definiteness of the quadratic form g.
(b) ($\mathbf{6 p}$) Write down the Kuhn-Tucker conditions of the problem in matrix form.
(c) (6p) Write down the non-degenerate constraint qualification in this problem, and find all admissible points where this condition does not hold (if there are any).
(d) (6p) Solve the Kuhn-Tucker problem.
(e) Extra credit (6p) Determine whether the set $D=\{(x, y, z, w): g(x, y, z, w) \leq 18\}$ of admissible points is a compact set.

