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Question 1.

(a)

Let vi,vs,vs3, vq be the column vectors of A. We use elementary row operations to find an
echelon form of A:

1 -1 0 4 1 -1 0 4 1 -1 0 4
3 2 10 _ 0 5 1 —-12 _ 0o 1 1 -4
2 1 10 0 3 1 -8 0 3 1 -8
0 -2 0 4 0 -2 0 4 0 -2 0 4

In the last step, we added 2 times the last row to the second row to simplify the computation.
Then we continue the Gaussian process:

1 -1 0 4 1 -1 0 4
0 1 1 -4 0 1 1 -4
0 0 -2 4 ~ 1o 0o —2 4
0 0 2 -4 00 0 0

We see from the pivot positions in the echelon form that vy, ve, v, vy are not linearly inde-
pendent vectors. We solve the linear system Ax = 0 to find a linear dependency relation:
We see from the echelon form that w is free, and back substitution gives that —2z + 4w = 0,
or z = 2w, that y+ 2z — 4w = 0, or y = —2w + 4w = 2w, and that x — y + 4w = 0, or

x = 2w — 4w = —2w. Hence the solutions are x = w(—2,2,2,1) and w = 1 gives
1
—2vi+2vo+2v3+vy =0 = V3= Vio Voo vy
From (a), we see that rk A = 3, hence dim Null(A) =4 — 3 = 1. Since we have that
1 -1 0 4 1 0
3 2 10 1 0
Aw=lo 1 10| |57 |2]|7°
0 -2 0 4 0 -2

it follows that the vector w is not in Null(A).
We get f(x) = 22 + 22y + 222 + 4vw + 29> + 2yz — 2yw + 2% + 4w? by multiplying the matrices
when we write x = (z,y, 2z, w). We see that this is a quadratic form with symmetric matrix

1 1 1 2
1 2 1 -1
B=11 1 1 o
2 —1 0 4

To determine the definiteness of B, we compute its leading principal minors: We have D = 1,
Dy =1, D3 = 0 (since the submatrix has two equal columns), and by cofactor expansion along
the last row, we get

11 2
Dy=|Bl=-22 1 —1/+(-1)-04+4-0=—-2(1(-1—-2) —1(-1—4)) = —4
11 0

Since Dy < 0, B is indefinite. In particular, |B| # 0, and the stationary points are given by
2Bx = 0, or Bx = 0. Therefore, the trivial solution x = 0 is the unique stationary point, and
it is a saddle point since B is indefinite.

This is not true. When x is a eigenvector of M with eigenvalue A\, we have

f(x)=x"TMx=x" x = MxIx= \|x|* > 0

but in general, this will not work when we have a linear combination of several eigevectors. A
counterexample is
1 6
=)
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which has two positive eigenvalues A = 1,2 > 0 but the function f(x) = x” Mx = 2% +62y+2y?
is not positive definite since f(—1,1)=1—-6+2= -3 <0.

Question 2.

(a)

We have that v = u(z,y,2) = 2+ Q(z,y, z) for the quadratic form @ with symmetric matrix

7T 4 2
A={(4 13 -1
2 -1 1

We compute the leading principal minors Dy = 7, Dy = 7-13 — 42 = 91 — 16 = 75, and
D3 = |A| = 2(—4—-26) — (-1)(=7—8) + 1(75) = —60 — 15+ 75 = 0. Hence A is positive
semi-definite by the RRC. Since Q(x) > 0 is positive semidefinite, u is a convex function with
minimum value umyi, = 2. Since the outer function f(u) = In(u)/u? has derivative

_ 1/u-v?—1In(u)-3u?  1-—3In(u)
- - 4

f'(w)

it has a stationary point at v = e'/3 = /e ~ 1.40, and f’ < 0 for u > ¢/e. For u > 2, the outer
function is decreasing, and this means that frax = f(2) =In(2)/8 at v = 2. The maximum is
attained at all points in Null(A4). For instance, f(0,0,0) = In(2)/8 since u(0,0,0) = 2.

From the constraint 22 + y? + 22 < 5, it follows that —v/5 < z,y,2 < /5, hence the set D
of admissible points is closed and bounded, and therefore D is compact. If the constraint
22 + 9% + 22 = 5 is binding, then the Jacobian matrix

J = (2$ 2y 2z)

ub U

has maximal rank rk.J = 1 since at least one of the variables must be non-zero, and in the
non-binding case there is no NDCQ condition. Hence the NDCQ is satisfied for all admissible
points.

The Kuhn-Tucker problem is in standard form. Since Q(x) = x” Ax, where A is matrix in (a),
and the constraint can be written x’ Ix < 5, we have the Lagrangian

L=xTAx — MxTIx =xT(A - \)x

This implies that the first order conditions can be written 2(A — AI)x = 0. We can also see
this by computing the first order conditions without using matrices. The solutions (x;\) of
the first order conditions are either points where x = 0, or points (x;\) where x is a non-
zero eigenvector of A with eigenvalue A. If x = 0, then the constraint is non-binding by the
CSC, and A = 0, and (0,0,0,0;0) is one candidate points with @ = 0. When x is a non-zero
eigenvector with eigenvalue A, then

Q(x) = xTAx = xT(\x) = AxTx < 5\
since x7x < 5 by the constraint. We compute the eigenvalues of A:

T-\ 4 2
JA=XI|=| 4 13—-X —1[=-X+21A2-90A=0
2 -1 1=

This gives eigenvalues A = 0,6,15, and Q(x) < 5-15 = 75 since A = 15 is the maximal
eigenvalue. We find candidate points with A = 15:

-8 4 2 2 -1 -14
A-15I=4 -2 -1 — 0o 0 27
2 -1 -14 0 0 0

Hence the eigenvectors in Fi5 are x = z(1,2,0) = (z,22,0) with = free. Since A > 0, the
constraint is binding, and this gives 2% + (22)? + 02 = 522 = 5, or x = £1. Hence there are
two candidate points (1,2,0;15), (—=1,—2,0;15) with A = 15 and @ = 75. We use the SOC to
check that these are maximum points:

h(x) = L(x;15) = xT (A — 151)x
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(d)

Since A has eigenvalues A = 0,6,15, A — 151 has eigenvalues A = —15,—9,0 and is negative
semidefinite. It follows that h is concave, and Qmax = 75 at (1,2,0) and (—1,—2,0) with
A=15.

We consider the Kuhn-Tucker problem with parameter a given by

max az’ + 8xy + dxz + 13y2 —2yz + 22 when 2% + y2 +22<5

From (c) we know that Q*(7) = 75 when a = 7, and x*(7) = (%1, £2,0) with A\*(7) = 15, and
L! = z%. By the Envelope Theorem, it follows that

dQ*(a)
da
at @ = 7. This means that the maximum value for ¢ = 8 can be estimated as

Q) ~Q (N +8-7)-1=T75+1=76

= L (x"(a); M () = 2"(a)® = (£1)* =1

Question 3.

(a)

The second order difference equation y;42 — Ty41 + 6y = —4 - 2¢ has characteristic equation
r2 —7r + 6 = 0, with characteristic roots r = 1 and » = 6. The homogeneous solution is
therefore yf =C1-1'+Cy-6' =C1 + Oy - 6'. To find a particular solution, we use y; = A - 2!
since f; = —4 - 2t. This gives

Yiro — Tys1 + 6y, =4A4-28 —14A4 .20 + 6A4-2 = —4A4.2 = —4. 2

Hence —4A = —4, or A = 1. The general solution is therefore y; = C; + Co - 6! 4+ 2t. We
have y; = C1 +6Cs +2 =9 and y3 = C1 + 216C5 + 8 = 225. This gives C7 + 6Cy = 7 and
C1 + 216Cs = 217. When we subtract the equations, we get 210Cy = 210, or C5 = 1, and it
follows that C; = 1. The solution is y; = 1 + 6! + 27,

To solve y' +y—1 =t(y—1) as a linear differential equation, we write it as ¢/ + (1 —t)y = 1—t.
Since [1—tdt =1t — t2/2 + C, we can use the integrating factor u = et_tz/Q, and this gives

(yu) = (1 — t)et_t2/2 = yu= /(1 - t)et_tQ/2 At =e=*/2 1 C

This gives the general solution y = 1 + Cet’/2=t. To solve v +y—1=1t(y—1) as a separable
differential equation, we write it as ¢y’ =t(y — 1) — (y — 1) = (¢ — 1)(y — 1). This gives
1
ﬁy/:t_l = Inly—1| :/t—ldt:t2/2—t+0
y J—
This gives [y—1| = e/*/27C or y—1 = Ke~T"/2 with K = +¢. We find the general solution
y=1+Ke /2 If4(0) = 4, then 1+K =4, or K = 3, and y(2) = 1+3¢2°/272 = 143¢0 = 4.

The eigenvalues of A are given by the characteristic equation
4—-Xx -1 2
[A=X|=] 1 1-A2 —-11]=0
2 -1 4-X

Cofactor expansion along the first row gives

JA=X|=A-XN((1=-XN4d-XN)—-1)—-(-1)d—-2A+2)+2(-1—-2(1-X)) =0
=(1-NE4-XN2—@A—-N+6—-XA+4\—6
=(1=NA=A2+4A—4=(1-NN=81+12)=-(A—-1)(A—2)(A —6)

Hence A has three distinct eigenvalues Ay = 1, Ay = 2, and A3 = 6, and we find an eigenvector
v; for \; for 1 <4 < 3: For A = 1, we find the eigenvector vi = (1,5, 1) since elementary row
operations give



For A = 2, we find the eigenvector vy = (—3, —4, 1) since elementary row operations give

2 -1 2 1 -1 -1
A-2I=|1 -1 -1 — 0O 1 4
2 -1 2 0 0 O
For A = 6, we find the eigenvector vs = (1,0, 1) since elementary row operations give
-2 -1 2 1 -5 -1
A-6I=(1 -5 -1 — 0 -2 0
2 -1 =2 0 0 O

It follows that A is diagonalizable
equations is

and that the general solution of the system of differential

1 -3 1

y = C1vieMt 4 Cyvoe?t + Cavze™ = C) [ 5| e +Cy | —4 | 2+ C5 | 0| 5

1 1 1



