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Question 1.

(a) Let v1,v2,v3,v4 be the column vectors of A. We use elementary row operations to find an
echelon form of A:

1 −1 0 4
3 2 1 0
2 1 1 0
0 −2 0 4

 →


1 −1 0 4
0 5 1 −12
0 3 1 −8
0 −2 0 4

 →


1 −1 0 4
0 1 1 −4
0 3 1 −8
0 −2 0 4


In the last step, we added 2 times the last row to the second row to simplify the computation.
Then we continue the Gaussian process:

1 −1 0 4
0 1 1 −4
0 0 −2 4
0 0 2 −4

 →


1 −1 0 4
0 1 1 −4
0 0 −2 4
0 0 0 0


We see from the pivot positions in the echelon form that v1,v2,v3,v4 are not linearly inde-
pendent vectors. We solve the linear system Ax = 0 to find a linear dependency relation:
We see from the echelon form that w is free, and back substitution gives that −2z + 4w = 0,
or z = 2w, that y + z − 4w = 0, or y = −2w + 4w = 2w, and that x − y + 4w = 0, or
x = 2w − 4w = −2w. Hence the solutions are x = w(−2, 2, 2, 1) and w = 1 gives

−2v1 + 2v2 + 2v3 + v4 = 0 ⇒ v3 = v1 − v2 −
1

2
v4

(b) From (a), we see that rkA = 3, hence dim Null(A) = 4− 3 = 1. Since we have that

A ·w =


1 −1 0 4
3 2 1 0
2 1 1 0
0 −2 0 4

 ·


1
1
−5
0

 =


0
0
−2
−2

 6= 0

it follows that the vector w is not in Null(A).
(c) We get f(x) = x2 + 2xy+ 2xz+ 4xw+ 2y2 + 2yz−2yw+ z2 + 4w2 by multiplying the matrices

when we write x = (x, y, z, w). We see that this is a quadratic form with symmetric matrix

B =


1 1 1 2
1 2 1 −1
1 1 1 0
2 −1 0 4


To determine the definiteness of B, we compute its leading principal minors: We have D1 = 1,
D2 = 1, D3 = 0 (since the submatrix has two equal columns), and by cofactor expansion along
the last row, we get

D4 = |B| = −2

∣∣∣∣∣∣
1 1 2
2 1 −1
1 1 0

∣∣∣∣∣∣+ (−1) · 0 + 4 · 0 = −2(1(−1− 2)− 1(−1− 4)) = −4

Since D4 < 0, B is indefinite. In particular, |B| 6= 0, and the stationary points are given by
2Bx = 0, or Bx = 0. Therefore, the trivial solution x = 0 is the unique stationary point, and
it is a saddle point since B is indefinite.

(d) This is not true. When x is a eigenvector of M with eigenvalue λ, we have

f(x) = xTMx = xTλx = λxTx = λ‖x‖2 > 0

but in general, this will not work when we have a linear combination of several eigevectors. A
counterexample is

M =

(
1 6
0 2

)
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which has two positive eigenvalues λ = 1, 2 > 0 but the function f(x) = xTMx = x2+6xy+2y2

is not positive definite since f(−1, 1) = 1− 6 + 2 = −3 < 0.

Question 2.

(a) We have that u = u(x, y, z) = 2 +Q(x, y, z) for the quadratic form Q with symmetric matrix

A =

7 4 2
4 13 −1
2 −1 1


We compute the leading principal minors D1 = 7, D2 = 7 · 13 − 42 = 91 − 16 = 75, and
D3 = |A| = 2(−4 − 26) − (−1)(−7 − 8) + 1(75) = −60 − 15 + 75 = 0. Hence A is positive
semi-definite by the RRC. Since Q(x) ≥ 0 is positive semidefinite, u is a convex function with
minimum value umin = 2. Since the outer function f(u) = ln(u)/u3 has derivative

f ′(u) =
1/u · u3 − ln(u) · 3u2

u6
=

1− 3 ln(u)

u4

it has a stationary point at u = e1/3 = 3
√
e ≈ 1.40, and f ′ < 0 for u ≥ 3

√
e. For u ≥ 2, the outer

function is decreasing, and this means that fmax = f(2) = ln(2)/8 at u = 2. The maximum is
attained at all points in Null(A). For instance, f(0, 0, 0) = ln(2)/8 since u(0, 0, 0) = 2.

(b) From the constraint x2 + y2 + z2 ≤ 5, it follows that −
√

5 ≤ x, y, z ≤
√

5, hence the set D
of admissible points is closed and bounded, and therefore D is compact. If the constraint
x2 + y2 + z2 = 5 is binding, then the Jacobian matrix

J =
(
2x 2y 2z

)
has maximal rank rk J = 1 since at least one of the variables must be non-zero, and in the
non-binding case there is no NDCQ condition. Hence the NDCQ is satisfied for all admissible
points.

(c) The Kuhn-Tucker problem is in standard form. Since Q(x) = xTAx, where A is matrix in (a),
and the constraint can be written xT Ix ≤ 5, we have the Lagrangian

L = xTAx− λxT Ix = xT (A− λI)x

This implies that the first order conditions can be written 2(A − λI)x = 0. We can also see
this by computing the first order conditions without using matrices. The solutions (x;λ) of
the first order conditions are either points where x = 0, or points (x;λ) where x is a non-
zero eigenvector of A with eigenvalue λ. If x = 0, then the constraint is non-binding by the
CSC, and λ = 0, and (0, 0, 0, 0; 0) is one candidate points with Q = 0. When x is a non-zero
eigenvector with eigenvalue λ, then

Q(x) = xTAx = xT (λx) = λxTx ≤ 5λ

since xTx ≤ 5 by the constraint. We compute the eigenvalues of A:

|A− λI| =

∣∣∣∣∣∣
7− λ 4 2

4 13− λ −1
2 −1 1− λ

∣∣∣∣∣∣ = −λ3 + 21λ2 − 90λ = 0

This gives eigenvalues λ = 0, 6, 15, and Q(x) ≤ 5 · 15 = 75 since λ = 15 is the maximal
eigenvalue. We find candidate points with λ = 15:

A− 15I =

−8 4 2
4 −2 −1
2 −1 −14

 →

2 −1 −14
0 0 27
0 0 0


Hence the eigenvectors in E15 are x = x(1, 2, 0) = (x, 2x, 0) with x free. Since λ > 0, the
constraint is binding, and this gives x2 + (2x)2 + 02 = 5x2 = 5, or x = ±1. Hence there are
two candidate points (1, 2, 0; 15), (−1,−2, 0; 15) with λ = 15 and Q = 75. We use the SOC to
check that these are maximum points:

h(x) = L(x; 15) = xT (A− 15I)x
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Since A has eigenvalues λ = 0, 6, 15, A − 15I has eigenvalues λ = −15,−9, 0 and is negative
semidefinite. It follows that h is concave, and Qmax = 75 at (1, 2, 0) and (−1,−2, 0) with
λ = 15.

(d) We consider the Kuhn-Tucker problem with parameter a given by

max ax2 + 8xy + 4xz + 13y2 − 2yz + z2 when x2 + y2 + z2 ≤ 5

From (c) we know that Q∗(7) = 75 when a = 7, and x∗(7) = (±1,±2, 0) with λ∗(7) = 15, and
L′a = x2. By the Envelope Theorem, it follows that

dQ∗(a)

da
= L′a(x∗(a);λ∗(a)) = x∗(a)2 = (±1)2 = 1

at a = 7. This means that the maximum value for a = 8 can be estimated as

Q∗(8) ≈ Q∗(7) + (8− 7) · 1 = 75 + 1 = 76

Question 3.

(a) The second order difference equation yt+2 − 7y+1 + 6yt = −4 · 2t has characteristic equation
r2 − 7r + 6 = 0, with characteristic roots r = 1 and r = 6. The homogeneous solution is
therefore yht = C1 · 1t +C2 · 6t = C1 +C2 · 6t. To find a particular solution, we use yt = A · 2t
since ft = −4 · 2t. This gives

yt+2 − 7y+1 + 6yt = 4A · 2t − 14A · 2t + 6A · 2t = −4A · 2t = −4 · 2t

Hence −4A = −4, or A = 1. The general solution is therefore yt = C1 + C2 · 6t + 2t. We
have y1 = C1 + 6C2 + 2 = 9 and y3 = C1 + 216C2 + 8 = 225. This gives C1 + 6C2 = 7 and
C1 + 216C2 = 217. When we subtract the equations, we get 210C2 = 210, or C2 = 1, and it
follows that C1 = 1. The solution is yt = 1 + 6t + 2t.

(b) To solve y′+y−1 = t(y−1) as a linear differential equation, we write it as y′+(1− t)y = 1− t.
Since

∫
1− tdt = t− t2/2 + C, we can use the integrating factor u = et−t

2/2, and this gives

(yu)′ = (1− t)et−t2/2 ⇒ yu =

∫
(1− t)et−t2/2 dt = et−t

2/2 + C

This gives the general solution y = 1 + Cet
2/2−t. To solve y′ + y − 1 = t(y − 1) as a separable

differential equation, we write it as y′ = t(y − 1)− (y − 1) = (t− 1)(y − 1). This gives

1

y − 1
y′ = t− 1 ⇒ ln |y − 1| =

∫
t− 1 dt = t2/2− t+ C

This gives |y−1| = et
2/2−t+C , or y−1 = Ke−t+t

2/2 with K = ±eC . We find the general solution

y = 1 +Ke−t+t
2/2. If y(0) = 4, then 1+K = 4, orK = 3, and y(2) = 1+3e2

2/2−2 = 1+3e0 = 4.
(c) The eigenvalues of A are given by the characteristic equation

|A− λI| =

∣∣∣∣∣∣
4− λ −1 2

1 1− λ −1
2 −1 4− λ

∣∣∣∣∣∣ = 0

Cofactor expansion along the first row gives

|A− λI| = (4− λ)((1− λ)(4− λ)− 1)− (−1)(4− λ+ 2) + 2(−1− 2(1− λ)) = 0

= (1− λ)(4− λ)2 − (4− λ) + 6− λ+ 4λ− 6

= (1− λ)(4− λ)2 + 4λ− 4 = (1− λ)(λ2 − 8λ+ 12) = −(λ− 1)(λ− 2)(λ− 6)

Hence A has three distinct eigenvalues λ1 = 1, λ2 = 2, and λ3 = 6, and we find an eigenvector
vi for λi for 1 ≤ i ≤ 3: For λ = 1, we find the eigenvector v1 = (1, 5, 1) since elementary row
operations give

A− I =

3 −1 2
1 0 −1
2 −1 3

 →

1 0 −1
0 −1 5
0 0 0


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For λ = 2, we find the eigenvector v2 = (−3,−4, 1) since elementary row operations give

A− 2I =

2 −1 2
1 −1 −1
2 −1 2

 →

1 −1 −1
0 1 4
0 0 0


For λ = 6, we find the eigenvector v3 = (1, 0, 1) since elementary row operations give

A− 6I =

−2 −1 2
1 −5 −1
2 −1 −2

 →

1 −5 −1
0 −2 0
0 0 0


It follows that A is diagonalizable and that the general solution of the system of differential
equations is

y = C1v1e
λ1t + C2v2e

λ2t + C3v3e
λ3t = C1

1
5
1

 et + C2

−3
−4
1

 e2t + C3

1
0
1

 e6t
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