Solutions	Final exam in GRA 6035 Mathematics
Date	March 19th, 2021 at 0900-1215

Question 1.

(a) Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ be the column vectors of A. We use elementary row operations to find an echelon form of A :

$$
\left(\begin{array}{cccc}
1 & -1 & 0 & 4 \\
3 & 2 & 1 & 0 \\
2 & 1 & 1 & 0 \\
0 & -2 & 0 & 4
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & -1 & 0 & 4 \\
0 & 5 & 1 & -12 \\
0 & 3 & 1 & -8 \\
0 & -2 & 0 & 4
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & -1 & 0 & 4 \\
0 & 1 & 1 & -4 \\
0 & 3 & 1 & -8 \\
0 & -2 & 0 & 4
\end{array}\right)
$$

In the last step, we added 2 times the last row to the second row to simplify the computation. Then we continue the Gaussian process:

$$
\left(\begin{array}{cccc}
1 & -1 & 0 & 4 \\
0 & 1 & 1 & -4 \\
0 & 0 & -2 & 4 \\
0 & 0 & 2 & -4
\end{array}\right) \quad \rightarrow\left(\begin{array}{cccc}
1 & -1 & 0 & 4 \\
0 & 1 & 1 & -4 \\
0 & 0 & -2 & 4 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

We see from the pivot positions in the echelon form that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ are not linearly independent vectors. We solve the linear system $A \mathbf{x}=\mathbf{0}$ to find a linear dependency relation: We see from the echelon form that w is free, and back substitution gives that $-2 z+4 w=0$, or $z=2 w$, that $y+z-4 w=0$, or $y=-2 w+4 w=2 w$, and that $x-y+4 w=0$, or $x=2 w-4 w=-2 w$. Hence the solutions are $\mathbf{x}=w(-2,2,2,1)$ and $w=1$ gives

$$
-2 \mathbf{v}_{1}+2 \mathbf{v}_{2}+2 \mathbf{v}_{3}+\mathbf{v}_{4}=0 \quad \Rightarrow \quad \mathbf{v}_{3}=\mathbf{v}_{1}-\mathbf{v}_{2}-\frac{1}{2} \mathbf{v}_{4}
$$

(b) From (a), we see that rk $A=3$, hence $\operatorname{dim} \operatorname{Null}(A)=4-3=1$. Since we have that

$$
A \cdot \mathbf{w}=\left(\begin{array}{cccc}
1 & -1 & 0 & 4 \\
3 & 2 & 1 & 0 \\
2 & 1 & 1 & 0 \\
0 & -2 & 0 & 4
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
1 \\
-5 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
-2 \\
-2
\end{array}\right) \neq \mathbf{0}
$$

it follows that the vector \mathbf{w} is not in $\operatorname{Null}(A)$.
(c) We get $f(\mathbf{x})=x^{2}+2 x y+2 x z+4 x w+2 y^{2}+2 y z-2 y w+z^{2}+4 w^{2}$ by multiplying the matrices when we write $\mathbf{x}=(x, y, z, w)$. We see that this is a quadratic form with symmetric matrix

$$
B=\left(\begin{array}{cccc}
1 & 1 & 1 & 2 \\
1 & 2 & 1 & -1 \\
1 & 1 & 1 & 0 \\
2 & -1 & 0 & 4
\end{array}\right)
$$

To determine the definiteness of B, we compute its leading principal minors: We have $D_{1}=1$, $D_{2}=1, D_{3}=0$ (since the submatrix has two equal columns), and by cofactor expansion along the last row, we get

$$
D_{4}=|B|=-2\left|\begin{array}{ccc}
1 & 1 & 2 \\
2 & 1 & -1 \\
1 & 1 & 0
\end{array}\right|+(-1) \cdot 0+4 \cdot 0=-2(1(-1-2)-1(-1-4))=-4
$$

Since $D_{4}<0, B$ is indefinite. In particular, $|B| \neq 0$, and the stationary points are given by $2 B \mathbf{x}=\mathbf{0}$, or $B \mathbf{x}=\mathbf{0}$. Therefore, the trivial solution $\mathbf{x}=\mathbf{0}$ is the unique stationary point, and it is a saddle point since B is indefinite.
(d) This is not true. When \mathbf{x} is a eigenvector of M with eigenvalue λ, we have

$$
f(\mathbf{x})=\mathbf{x}^{T} M \mathbf{x}=\mathbf{x}^{T} \lambda \mathbf{x}=\lambda \mathbf{x}^{T} \mathbf{x}=\lambda\|\mathbf{x}\|^{2}>0
$$

but in general, this will not work when we have a linear combination of several eigevectors. A counterexample is

$$
M=\underset{\substack{1}}{\left(\begin{array}{ll}
1 & 6 \\
0 & 2
\end{array}\right)}
$$

which has two positive eigenvalues $\lambda=1,2>0$ but the function $f(\mathbf{x})=\mathbf{x}^{T} M \mathbf{x}=x^{2}+6 x y+2 y^{2}$ is not positive definite since $f(-1,1)=1-6+2=-3<0$.

Question 2.

(a) We have that $u=u(x, y, z)=2+Q(x, y, z)$ for the quadratic form Q with symmetric matrix

$$
A=\left(\begin{array}{ccc}
7 & 4 & 2 \\
4 & 13 & -1 \\
2 & -1 & 1
\end{array}\right)
$$

We compute the leading principal minors $D_{1}=7, D_{2}=7 \cdot 13-4^{2}=91-16=75$, and $D_{3}=|A|=2(-4-26)-(-1)(-7-8)+1(75)=-60-15+75=0$. Hence A is positive semi-definite by the RRC. Since $Q(\mathbf{x}) \geq 0$ is positive semidefinite, u is a convex function with minimum value $u_{\text {min }}=2$. Since the outer function $f(u)=\ln (u) / u^{3}$ has derivative

$$
f^{\prime}(u)=\frac{1 / u \cdot u^{3}-\ln (u) \cdot 3 u^{2}}{u^{6}}=\frac{1-3 \ln (u)}{u^{4}}
$$

it has a stationary point at $u=e^{1 / 3}=\sqrt[3]{e} \approx 1.40$, and $f^{\prime}<0$ for $u \geq \sqrt[3]{e}$. For $u \geq 2$, the outer function is decreasing, and this means that $f_{\max }=f(2)=\ln (2) / 8$ at $u=2$. The maximum is attained at all points in $\operatorname{Null}(A)$. For instance, $f(0,0,0)=\ln (2) / 8$ since $u(0,0,0)=2$.
(b) From the constraint $x^{2}+y^{2}+z^{2} \leq 5$, it follows that $-\sqrt{5} \leq x, y, z \leq \sqrt{5}$, hence the set D of admissible points is closed and bounded, and therefore D is compact. If the constraint $x^{2}+y^{2}+z^{2}=5$ is binding, then the Jacobian matrix

$$
J=\left(\begin{array}{lll}
2 x & 2 y & 2 z
\end{array}\right)
$$

has maximal rank rk $J=1$ since at least one of the variables must be non-zero, and in the non-binding case there is no NDCQ condition. Hence the NDCQ is satisfied for all admissible points.
(c) The Kuhn-Tucker problem is in standard form. Since $Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$, where A is matrix in (a), and the constraint can be written $\mathbf{x}^{T} I \mathbf{x} \leq 5$, we have the Lagrangian

$$
\mathcal{L}=\mathbf{x}^{T} A \mathbf{x}-\lambda \mathbf{x}^{T} I \mathbf{x}=\mathbf{x}^{T}(A-\lambda I) \mathbf{x}
$$

This implies that the first order conditions can be written $2(A-\lambda I) \mathbf{x}=0$. We can also see this by computing the first order conditions without using matrices. The solutions ($\mathbf{x} ; \lambda$) of the first order conditions are either points where $\mathbf{x}=\mathbf{0}$, or points $(\mathbf{x} ; \lambda)$ where \mathbf{x} is a nonzero eigenvector of A with eigenvalue λ. If $\mathbf{x}=\mathbf{0}$, then the constraint is non-binding by the CSC, and $\lambda=0$, and $(0,0,0,0 ; 0)$ is one candidate points with $Q=0$. When \mathbf{x} is a non-zero eigenvector with eigenvalue λ, then

$$
Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}=\mathbf{x}^{T}(\lambda \mathbf{x})=\lambda \mathbf{x}^{T} \mathbf{x} \leq 5 \lambda
$$

since $\mathbf{x}^{T} \mathbf{x} \leq 5$ by the constraint. We compute the eigenvalues of A :

$$
|A-\lambda I|=\left|\begin{array}{ccc}
7-\lambda & 4 & 2 \\
4 & 13-\lambda & -1 \\
2 & -1 & 1-\lambda
\end{array}\right|=-\lambda^{3}+21 \lambda^{2}-90 \lambda=0
$$

This gives eigenvalues $\lambda=0,6,15$, and $Q(\mathbf{x}) \leq 5 \cdot 15=75$ since $\lambda=15$ is the maximal eigenvalue. We find candidate points with $\lambda=15$:

$$
A-15 I=\left(\begin{array}{ccc}
-8 & 4 & 2 \\
4 & -2 & -1 \\
2 & -1 & -14
\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{ccc}
2 & -1 & -14 \\
0 & 0 & 27 \\
0 & 0 & 0
\end{array}\right)
$$

Hence the eigenvectors in E_{15} are $\mathbf{x}=x(1,2,0)=(x, 2 x, 0)$ with x free. Since $\lambda>0$, the constraint is binding, and this gives $x^{2}+(2 x)^{2}+0^{2}=5 x^{2}=5$, or $x= \pm 1$. Hence there are two candidate points $(1,2,0 ; 15),(-1,-2,0 ; 15)$ with $\lambda=15$ and $Q=75$. We use the SOC to check that these are maximum points:

$$
h(\mathbf{x})=\mathcal{L}(\mathbf{x} ; 15)=\mathbf{x}^{T}(A-15 I) \mathbf{x}
$$

Since A has eigenvalues $\lambda=0,6,15, A-15 I$ has eigenvalues $\lambda=-15,-9,0$ and is negative semidefinite. It follows that h is concave, and $Q_{\max }=75$ at $(1,2,0)$ and $(-1,-2,0)$ with $\lambda=15$.
(d) We consider the Kuhn-Tucker problem with parameter a given by

$$
\max a x^{2}+8 x y+4 x z+13 y^{2}-2 y z+z^{2} \text { when } x^{2}+y^{2}+z^{2} \leq 5
$$

From (c) we know that $Q^{*}(7)=75$ when $a=7$, and $\mathbf{x}^{*}(7)=(\pm 1, \pm 2,0)$ with $\lambda^{*}(7)=15$, and $\mathcal{L}_{a}^{\prime}=x^{2}$. By the Envelope Theorem, it follows that

$$
\frac{d Q^{*}(a)}{d a}=\mathcal{L}_{a}^{\prime}\left(\mathbf{x}^{*}(a) ; \lambda^{*}(a)\right)=x^{*}(a)^{2}=(\pm 1)^{2}=1
$$

at $a=7$. This means that the maximum value for $a=8$ can be estimated as

$$
Q^{*}(8) \approx Q^{*}(7)+(8-7) \cdot 1=75+1=76
$$

Question 3.

(a) The second order difference equation $y_{t+2}-7 y_{+1}+6 y_{t}=-4 \cdot 2^{t}$ has characteristic equation $r^{2}-7 r+6=0$, with characteristic roots $r=1$ and $r=6$. The homogeneous solution is therefore $y_{t}^{h}=C_{1} \cdot 1^{t}+C_{2} \cdot 6^{t}=C_{1}+C_{2} \cdot 6^{t}$. To find a particular solution, we use $y_{t}=A \cdot 2^{t}$ since $f_{t}=-4 \cdot 2^{t}$. This gives

$$
y_{t+2}-7 y_{+1}+6 y_{t}=4 A \cdot 2^{t}-14 A \cdot 2^{t}+6 A \cdot 2^{t}=-4 A \cdot 2^{t}=-4 \cdot 2^{t}
$$

Hence $-4 A=-4$, or $A=1$. The general solution is therefore $y_{t}=C_{1}+C_{2} \cdot 6^{t}+2^{t}$. We have $y_{1}=C_{1}+6 C_{2}+2=9$ and $y_{3}=C_{1}+216 C_{2}+8=225$. This gives $C_{1}+6 C_{2}=7$ and $C_{1}+216 C_{2}=217$. When we subtract the equations, we get $210 C_{2}=210$, or $C_{2}=1$, and it follows that $C_{1}=1$. The solution is $y_{t}=1+6^{t}+2^{t}$.
(b) To solve $y^{\prime}+y-1=t(y-1)$ as a linear differential equation, we write it as $y^{\prime}+(1-t) y=1-t$. Since $\int 1-t \mathrm{~d} t=t-t^{2} / 2+C$, we can use the integrating factor $u=e^{t-t^{2} / 2}$, and this gives

$$
(y u)^{\prime}=(1-t) e^{t-t^{2} / 2} \quad \Rightarrow \quad y u=\int(1-t) e^{t-t^{2} / 2} \mathrm{~d} t=e^{t-t^{2} / 2}+C
$$

This gives the general solution $y=1+C e^{t^{2} / 2-t}$. To solve $y^{\prime}+y-1=t(y-1)$ as a separable differential equation, we write it as $y^{\prime}=t(y-1)-(y-1)=(t-1)(y-1)$. This gives

$$
\frac{1}{y-1} y^{\prime}=t-1 \quad \Rightarrow \quad \ln |y-1|=\int t-1 \mathrm{~d} t=t^{2} / 2-t+C
$$

This gives $|y-1|=e^{t^{2} / 2-t+C}$, or $y-1=K e^{-t+t^{2} / 2}$ with $K= \pm e^{C}$. We find the general solution $y=1+K e^{-t+t^{2} / 2}$. If $y(0)=4$, then $1+K=4$, or $K=3$, and $y(2)=1+3 e^{2^{2} / 2-2}=1+3 e^{0}=4$.
(c) The eigenvalues of A are given by the characteristic equation

$$
|A-\lambda I|=\left|\begin{array}{ccc}
4-\lambda & -1 & 2 \\
1 & 1-\lambda & -1 \\
2 & -1 & 4-\lambda
\end{array}\right|=0
$$

Cofactor expansion along the first row gives

$$
\begin{aligned}
|A-\lambda I| & =(4-\lambda)((1-\lambda)(4-\lambda)-1)-(-1)(4-\lambda+2)+2(-1-2(1-\lambda))=0 \\
& =(1-\lambda)(4-\lambda)^{2}-(4-\lambda)+6-\lambda+4 \lambda-6 \\
& =(1-\lambda)(4-\lambda)^{2}+4 \lambda-4=(1-\lambda)\left(\lambda^{2}-8 \lambda+12\right)=-(\lambda-1)(\lambda-2)(\lambda-6)
\end{aligned}
$$

Hence A has three distinct eigenvalues $\lambda_{1}=1, \lambda_{2}=2$, and $\lambda_{3}=6$, and we find an eigenvector \mathbf{v}_{i} for λ_{i} for $1 \leq i \leq 3$: For $\lambda=1$, we find the eigenvector $\mathbf{v}_{1}=(1,5,1)$ since elementary row operations give

$$
A-I=\left(\begin{array}{ccc}
3 & -1 & 2 \\
1 & 0 & -1 \\
2 & -1 & 3
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & -1 & 5 \\
0 & 0 & 0
\end{array}\right)
$$

For $\lambda=2$, we find the eigenvector $\mathbf{v}_{2}=(-3,-4,1)$ since elementary row operations give

$$
A-2 I=\left(\begin{array}{ccc}
2 & -1 & 2 \\
1 & -1 & -1 \\
2 & -1 & 2
\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right)
$$

For $\lambda=6$, we find the eigenvector $\mathbf{v}_{3}=(1,0,1)$ since elementary row operations give

$$
A-6 I=\left(\begin{array}{ccc}
-2 & -1 & 2 \\
1 & -5 & -1 \\
2 & -1 & -2
\end{array}\right) \quad \rightarrow\left(\begin{array}{ccc}
1 & -5 & -1 \\
0 & -2 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

It follows that A is diagonalizable and that the general solution of the system of differential equations is

$$
\mathbf{y}=C_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+C_{2} \mathbf{v}_{2} e^{\lambda_{2} t}+C_{3} \mathbf{v}_{3} e^{\lambda_{3} t}=C_{1}\left(\begin{array}{l}
1 \\
5 \\
1
\end{array}\right) e^{t}+C_{2}\left(\begin{array}{c}
-3 \\
-4 \\
1
\end{array}\right) e^{2 t}+C_{3}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) e^{6 t}
$$

