Question 1.

(a) The nullspace of A is the set of solutions of $A \mathbf{x}=\mathbf{0}$. We use Gaussian elimination to find the solutions:
$\left(\begin{array}{cccc}1 & 2 & 0 & 2 \\ 2 & 4 & 2 & 0 \\ 0 & 0 & 5 & 6 \\ 0 & 0 & 6 & 10\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & 2 & 0 & 2 \\ 0 & 0 & 2 & -4 \\ 0 & 0 & 5 & 6 \\ 0 & 0 & 6 & 10\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & 2 & 0 & 2 \\ 0 & 0 & 2 & -4 \\ 0 & 0 & 0 & 16 \\ 0 & 0 & 0 & 22\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & 2 & 0 & 2 \\ 0 & 0 & 2 & -4 \\ 0 & 0 & 0 & 16 \\ 0 & 0 & 0 & 0\end{array}\right)$
Since there are three pivot positions, we have that $\operatorname{dim} \operatorname{Null}(A)=4-3=1$, with y free since there is no pivot position in the y column. To find solutions (x, y, z, w) we use back substitution. This gives $16 w=0$, or $w=0$ from the third equation, $2 z-w=0$, or $z=0$ from the second, and $x+2 y+2 w=0$, or $x=-2 y$ with y free from the first. The solutions are therefore given by

$$
(x, y, z, w)=(-2 y, y, 0,0)=y \cdot(-2,1,0,0)=y \cdot \mathbf{w}
$$

where $\mathbf{w}=(-2,1,0,0)$, and $\mathcal{B}=\{\mathbf{w}\}$ is a base of $\operatorname{Null}(A)$. To find the eigenvalues of A, we solve the characteristic equation:

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cccc}
1-\lambda & 2 & 0 & 2 \\
2 & 4-\lambda & 2 & 0 \\
0 & 0 & 5-\lambda & 6 \\
0 & 0 & 6 & 10-\lambda
\end{array}\right|=0
$$

We use cofactor expansion along the first column to compute the determinant, and get

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =(1-\lambda) \cdot(4-\lambda)\left|\begin{array}{cc}
5-\lambda & 6 \\
6 & 10-\lambda
\end{array}\right|-2 \cdot 2\left|\begin{array}{cc}
5-\lambda & 6 \\
6 & 10-\lambda
\end{array}\right| \\
& =[(1-\lambda)(4-\lambda)-4] \cdot[(5-\lambda)(10-\lambda)-36] \\
& =\left(\lambda^{2}-5 \lambda\right)\left(\lambda^{2}-15 \lambda+14\right)=\lambda(\lambda-5)(\lambda-1)(\lambda-14)
\end{aligned}
$$

Therefore the eigenvalues of A are $\lambda_{1}=0, \lambda_{2}=1, \lambda_{3}=5, \lambda_{4}=14$.
(b) Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ be the column vectors of A. We see from the echelon form above that there are pivot positions in column 1,3 and 4 of A. Hence $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is a base of $\operatorname{Col}(A)$. Since $\operatorname{dim} \operatorname{Col}(A)=3<4=\operatorname{dim} \mathbb{R}^{4}$, there are vectors in \mathbb{R}^{4} not in $\operatorname{Col}(A)$. We use Gaussian elimination to find all vectors (a, b, c, d) that are in $\operatorname{Col}(A)$:

$$
\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 2 & a \\
2 & 4 & 2 & 0 & b \\
0 & 0 & 5 & 6 & c \\
0 & 0 & 6 & 10 & d
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 2 & a \\
0 & 0 & 2 & -4 & b-2 a \\
0 & 0 & 10 & 12 & 2 c \\
0 & 0 & 6 & 10 & d
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 2 & a \\
0 & 0 & 2 & -4 & b-2 a \\
0 & 0 & 0 & 32 & 2 c-5 b+10 a \\
0 & 0 & 0 & 22 & d-3 b+6 a
\end{array}\right)
$$

This linear system has solutions if and only if $32(d-3 b+6 a)=22(2 c-5 b+10 a)$, which can be written $-28 a+14 b-44 c+32 d=0$, since a non-zero determinant correspond to a pivot position in the fourth and fifth column. We can write this equation as $-14 a+7 b-22 c+16 d=0$, and this means that $\mathbf{v}=(a, b, c, d)$ is not in $\operatorname{Col}(A)$ if and only if $-14 a+7 b-22 c+16 d \neq 0$. One example of a vector not in $\operatorname{Col}(A)$ is $\mathbf{v}=(1,0,0,0)$ since $-14 \cdot 1=-14 \neq 0$.
(c) The symmetric matrix B of the quadratic form $f(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$ is given by

$$
B=\frac{1}{2}\left(A+A^{T}\right)=\left(\begin{array}{cccc}
1 & 2 & 0 & 1 \\
2 & 4 & 1 & 0 \\
0 & 1 & 5 & 6 \\
1 & 0 & 6 & 10
\end{array}\right)
$$

and the first three leading principal minors of B are $D_{1}=1, D_{2}=1 \cdot 4-2 \cdot 2=0$, and

$$
D_{3}=\left|\begin{array}{lll}
1 & 2 & 0 \\
2 & 4 & 1 \\
0 & 1 & 5
\end{array}\right|=1(20-1)-2(10-0)=19-20=-1
$$

Since $D_{1}>0$ and $D_{3}<0$, the quadratic form f in indefinite.
(d) Let us write $\mathbf{x}=(x, y, z, w)$ for the variables. Then the constraint is $x^{2}+y^{2}+z^{2}+w^{2}=1$ since $\mathbf{x}^{T} \mathbf{x}=\mathbf{x}^{T} I \mathbf{x}$. Hence the set of admissible points is closed and bounded, and the Lagrange problem has a solution. It is also clear that there are no admissible points where NDCQ fails, since

$$
\operatorname{rk} J=\operatorname{rk}\left(\begin{array}{llll}
2 x & 2 y & 2 z & 2 w
\end{array}\right)= \begin{cases}0, & (x, y, z, w)=(0,0,0,0) \\
1, & (x, y, z, w) \neq(0,0,0,0)\end{cases}
$$

and $(0,0,0,0)$ is clearly not admissible since $\mathbf{x}^{T} \mathbf{x}=0 \neq 1$ at this point. Hence the problem has a max and a min among the ordinary candidate points ($\mathbf{x} ; \lambda$) where the first order conditions hold. The Lagrangian is $\mathcal{L}=f(\mathbf{x})-\lambda\left(\mathbf{x}^{T} \mathbf{x}\right)$, and the first order conditions can be written in matrix form as

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{x}}=2 B \mathbf{x}-\lambda \cdot 2 I \mathbf{x}=2(B-\lambda I) \mathbf{x}=\mathbf{0}
$$

where B is the symmetric matrix of the quadratic form f. We could also find the first order conditions by writing out the quadratic form f and the constraint. This implies that $\mathbf{x}=\mathbf{0}$ or that \mathbf{x} is an eigenvector of B with eigenvalue λ. Clearly, $\mathbf{x}=\mathbf{0}$ does not satisfy the constraint. In fact, the constraint $\mathbf{x}^{T} \mathbf{x}=1$ means that \mathbf{x} is a vector of length one. We notice that the matrix B has four eigenvalues counted with multiplicity since it is symmetric, and we can write them $\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \lambda_{4}$. For each eigenvalue λ, there are at least two eigenvectors of length one with eigenvalue λ. In fact, there are two if $\operatorname{dim} E_{\lambda}=1$ and infinitely many otherwise. Based on this, we conclude that there are at least two candidate points $(\mathbf{x} ; \lambda)$ for each eigenvalue λ where \mathbf{x} is an eigenvector of B with eigenvalue λ, and that these are the only candidate points. The value of f at such a candidate point is given by

$$
f(\mathbf{x})=\mathbf{x}^{T} B \mathbf{x}=\mathbf{x}^{T} \lambda \mathbf{x}=\lambda \mathbf{x}^{T} \mathbf{x}=\lambda \cdot 1=\lambda
$$

Hence the maximum value in the Lagrange problem is given by $f_{\max }=\lambda_{4}$ (the maximal eigenvalue of B), and the minimum value is given by $f_{\min }=\lambda_{1}$ (the minimal eigenvalue of B).

Question 2.

(a) We have that $f(x, y, z)=\ln (5-u)$ where $u=u(x, y, z)=x^{2}+y^{2}+z^{2}-x y+x z-y z$ is a quadratic form. The symmetric matrix of the quadratic form is given by

$$
A=\left(\begin{array}{ccc}
1 & -1 / 2 & 1 / 2 \\
-1 / 2 & 1 & -1 / 2 \\
1 / 2 & -1 / 2 & 1
\end{array}\right)
$$

Since the leading principal minors are $D_{1}=1, D_{2}=1-1 / 4=3 / 4$, and

$$
D_{3}=|A|=1(1-1 / 4)+1 / 2(-1 / 2+1 / 4)+1 / 2(1 / 4-1 / 2)=3 / 4-1 / 8-1 / 8=1 / 2
$$

with $D_{1}, D_{2}, D_{3}>0, u$ is positive definite. This means that $u(x, y, z) \geq 0$, and therefore that $5-u(x, y, z) \leq 5$ at all points (x, y, z). We conclude that $f_{\max }=\ln 5$ since $h(u)=\ln (u)$ is a strictly increasing function; that is, $u_{1}<u_{2}$ implies that $h\left(u_{1}\right)<h\left(u_{2}\right)$ since $h^{\prime}(u)=1 / u>0$. The maximizer is $(x, y, z)=(0,0,0)$ with $f(0,0,0)=\ln 5$.
(b) A subset of $D \subseteq \mathbb{R}^{4}$ is compact if and only if it is closed and bounded, and by definition, it is bounded if there are finite numbers $a_{1}, a_{2}, a_{3}, a_{4}$ and $b_{1}, b_{2}, b_{3}, b_{4}$ such that

$$
a_{1} \leq x \leq b_{1}, a_{2} \leq y \leq b_{2}, a_{3} \leq z \leq b_{3}, a_{4} \leq w \leq b_{4}
$$

for all $(x, y, z, w) \in D$. Since the point $(a, a,-a,-a)$ give $x w+y z=-2 a^{2}$, and $-2 a^{2} \leq-2$ when $a^{2} \geq 1$, we have that $(a, a,-a,-a) \in D$ for all $a \geq 1$ and all $a \leq-1$. This means that D is not bounded, and therefore not compact. The set D is closed since it is given by a closed inequality.
(c) The Kuhn-Tucker problem can be written in standard form as

$$
\max -f(x, y, z, w)=-x^{2}-4 y^{2}-9 z^{2}-w^{2} \text { subject to } x w+y z \leq-2
$$

It Lagrangian is $\mathcal{L}=-x^{2}-4 y^{2}-9 z^{2}-w^{2}-\lambda(x w+y z)$, and the first order conditions (FOC) are

$$
\begin{array}{ll}
\mathcal{L}_{x}^{\prime}=-2 x-\lambda w=0 & \mathcal{L}_{y}^{\prime}=-8 y-\lambda z=0 \\
\mathcal{L}_{z}^{\prime}=-18 z-\lambda y=0 & \mathcal{L}_{w}^{\prime}=-2 w-\lambda x=0
\end{array}
$$

The constraint (C) is given by $x w+y z \leq-2$, and the complementary slackness conditions (CSC) by $\lambda \geq 0$ and $\lambda(x w+y z+2)=0$. The first and last FOC's give

$$
x=-\frac{1}{2} \lambda w \quad \Rightarrow \quad-2 w=\lambda\left(-\frac{1}{2} \lambda w\right)=-\frac{1}{2} \lambda^{2} w
$$

This means that $w=\lambda^{2} w / 4$, which give $w=0$ or $\lambda^{2}=4$. Since $\lambda \geq 0$ by the CSC, this implies that either $w=x=0$, or $\lambda=2$ and $x=-w$. In a similar way, the two middle FOC's give

$$
y=-\frac{1}{8} \lambda z \quad \Rightarrow \quad-18 z=\lambda\left(-\frac{1}{8} \lambda z\right)=-\frac{1}{8} \lambda^{2} z
$$

This means that $z=\lambda^{2} z / 144$, which give $z=0$ or $\lambda^{2}=144$. Since $\lambda \geq 0$ by the CSC, this implies that either $z=y=0$, or $\lambda=12$ and $y=-3 z / 2$. From the constraint, we see that the point $(x, y, z, w)=(0,0,0,0)$ is not admissible, and we are left with the following possibilities:

$$
(x, y, z, w ; \lambda)=(0,-3 z / 2, z, 0 ; 12),(-w, 0,0, w ; 2)
$$

By the second part of the CSC, we have that $x w-y z=-2$ since $\lambda>0$. In the first case, we get that $x w+y z=-3 z / 2 \cdot z=-3 z^{2} / 2=-2$, or $z^{2}=4 / 3$. In the second case, we get that $x w+y z=-w \cdot w=-w^{2}=-2$, or $w^{2}=2$. Hence the following points are the solutions of the Kuhn-Tucker conditions, with corresponding f-values:

$$
\begin{aligned}
(x, y, z, w ; \lambda) & =(0,-\sqrt{3}, 2 / \sqrt{3}, 0 ; 12),(0, \sqrt{3},-2 / \sqrt{3}, 0 ; 12), \quad f=4 \cdot 3+9 \cdot 4 / 3=24 \\
& =(-\sqrt{2}, 0,0, \sqrt{2} ; 2),(\sqrt{2}, 0,0,-\sqrt{2} ; 2), \quad f=2+2=4
\end{aligned}
$$

Question 3.

(a) We solve the second order linear difference equation $y_{t+2}-y_{t+1}-2 y_{t}=4 t$ using superposition. To find y_{t}^{h}, we consider the homogeneous equation $y_{t+2}-y_{t+1}-2 y_{t}=0$, which has characteristic equation $r^{2}-r-2=0$ with roots $r=-1$ and $r=2$. Hence $y_{t}^{h}=C_{1}(-1)^{t}+C_{2} \cdot 2^{t}$. To find the particular solution y_{t}^{p}, we consider the difference equation $y_{t+2}-y_{t+1}-2 y_{t}=4 t$ and use the method of undetermined coefficients. Since $f_{t}=4 t$, we use $y_{t}=A t+B$, which gives $y_{t+1}=A(t+1)+B$ and $y_{t+2}=A(t+2)+B$. When we substitute this into the difference equation, we get

$$
A(t+2)+B-(A(t+1)+B)-2(A t+B)=4 t \quad \Leftrightarrow \quad-2 A t+(A-2 B)=4 t
$$

Comparing coefficients, we get $-2 A=4$, or $A=-2$, and $A-2 B=0$, or $B=A / 2=-1$. Hence $y_{p}=-2 t-1$ and the general solution is therefore

$$
y=y_{t}^{h}+y_{t}^{p}=C_{1}(-1)^{t}+C_{2} \cdot 2^{t}-2 t-1
$$

With initial conditions $y_{0}=y_{1}=1$, we get $C_{1}+C_{2}-1=1$, or $C_{1}+C_{2}=2$ from the first condition, and $-C_{1}+2 C_{2}-3=1$, or $-C_{1}+2 C_{2}=4$ from the second. Adding these equations, we get $3 C_{2}=6$, or $C_{2}=2$, and this gives $C_{1}=0$. The particular solution is therefore

$$
y=2 \cdot 2^{t}-2 t-1=2^{t+1}-2 t-1
$$

This means that $y_{17}=2^{18}-2(17)-1=262109$.
(b) The differential equation $t^{2} y^{\prime}+2 t y=1$ can be written $t^{2} y^{\prime}=1-2 t y$ or $y^{\prime}=(1-2 t y) / t^{2}$. The right-hand side cannot be factored as $f(t) \cdot g(y)$, hence the equation is not separable. The differential equation can be written on the form $y^{\prime}+a(t) y=b(t)$, since division by t^{2} gives

$$
y^{\prime}+\frac{2}{t} y=\frac{1}{t^{2}}
$$

Hence the equation is linear. We solve it using integrating factor: The integrating factor is $u=e^{2 \ln t}=\left(e^{\ln t}\right)^{2}=t^{2}$ since $\int 2 / t \mathrm{~d} t=2 \ln |t|+C$ and $|t|^{2}=t^{2}$. Multiplying with $u=t^{2}$, we get

$$
t^{2} y^{\prime}+2 t y=1 \quad \Leftrightarrow \quad\left(t^{2} y\right)^{\prime}=1 \quad \Leftrightarrow \quad t^{2} y=\int 1 \mathrm{~d} t=t+C
$$

The equation has general solution $y=1 / t+C / t^{2}$. Finally, the differential equation can be written $t^{2} y^{\prime}+2 t y-1=0$, and with $h=t^{2} y-t$ we have

$$
t^{2} y^{\prime}+(2 t y-1)=h_{y}^{\prime} \cdot y^{\prime}+h_{t}^{\prime}=0
$$

Therefore the equation is exact, and the solution is given by $h(t, y)=C$. This gives

$$
t^{2} y-t=C \quad \Leftrightarrow \quad y=\frac{C+t}{t^{2}}=C / t^{2}+1 / t
$$

We notice that this is the same solution as we found above using integrating factor.
(c) We can write $y=3 e^{-2 t}-5 e^{t}+12 e^{-3 t}=y_{h}+y_{p}$ in several different ways. If the genaral homogeneous solution is $y_{h}=C_{1} e^{-2 t}-C_{2} e^{t}$, then the characteristic roots are $r=-2$ and $r=1$, which gives the characteristic equation $(r+2)(r-1)=r^{2}+r-2=0$. Hence the homogeneous equation is $y^{\prime \prime}+y^{\prime}-2 y=0$. If we substitute $y=y_{p}=12 e^{-3 t}$ in the left-hand side, we get
$y^{\prime \prime}+y^{\prime}-2 y=(-3)^{2} \cdot 12 e^{-3 t}+(-3) \cdot 12 e^{-3 t}-2 \cdot 12 e^{-3 t}=12 e^{-3 t}(9-3-2)=48 e^{-3 t}$
It follows that the linear second order differential equation $y^{\prime \prime}+y^{\prime}-2 y=48 e^{-3 t}$ has y as a particular solution. Using the other decompositions $y=y_{h}+y_{p}$, we find that the linear second order differential equations

$$
y^{\prime \prime}+5 y^{\prime}+6 y=-60 e^{t} \quad \text { or } \quad y^{\prime \prime}+2 y^{\prime}-3 y=-9 e^{-2 t}
$$

also have y as a particular solution.
(d) We consider the system $\mathbf{y}^{\prime}=A \mathbf{y}$ with $\mathbf{y}=\left(y, y^{\prime}, y^{\prime \prime}\right)$. It has the form

$$
\mathbf{y}^{\prime}=\left(\begin{array}{l}
y^{\prime} \\
y^{\prime \prime} \\
y^{\prime \prime \prime}
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
r & s & t
\end{array}\right) \cdot\left(\begin{array}{c}
y \\
y^{\prime} \\
y^{\prime \prime}
\end{array}\right)=A \mathbf{y}
$$

where the coefficients in the first and second row follows from the fact that $y_{1}^{\prime}=y_{2}$ and $y_{2}^{\prime}=y_{3}$ when $\left(y_{1}, y_{2}, y_{3}\right)=\left(y, y^{\prime}, y^{\prime \prime}\right)$. We know that when A is diagonalizable with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$, then the general solution of the system is given by

$$
\mathbf{y}=C_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+C_{2} \mathbf{v}_{2} e^{\lambda_{2} t}+C_{3} \mathbf{v}_{3} e^{\lambda_{3} t}
$$

Comparing with $y=3 e^{-2 t}-5 e^{t}+12 e^{-3 t}$ from (c), we see that we should try to find a diagonalizable matrix A of the above form with eigenvalues $\lambda_{1}=-2, \lambda_{2}=1$, and $\lambda_{3}=-3$. We use this to determine r, s, t in the last row of A. In fact, the eigenvalues of A are given by the characteristic equation

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & -\lambda & 1 \\
r & s & t-\lambda
\end{array}\right|=0
$$

Cofactor expansion along the first row gives

$$
0=-\lambda(-\lambda(t-\lambda)-s)-1(0-r)=-\lambda\left(\lambda^{2}-t \lambda-s\right)+r=-\lambda^{3}+t \lambda^{2}+s \lambda+r
$$

On the other hand, since the eigenvalues of A should be $\lambda_{1}=-2, \lambda_{2}=1$, and $\lambda_{3}=-3$, the characteristic equation is given by

$$
-(\lambda+2)(\lambda-1)(\lambda+3)=-\left(\lambda^{2}+\lambda-2\right)(\lambda+3)=-\left(\lambda^{3}+4 \lambda^{2}+\lambda-6\right)=0
$$

This can be written $-\lambda^{3}-4 \lambda^{2}-\lambda+6=0$. Comparing the two characteristic equations, we find that $t=-4, s=-1$, and $r=6$. This means that

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & -1 & -4
\end{array}\right)
$$

We see that this matrix is diagonalizable with three distinct eigenvalues.

