EVALUATION GUIDELINES - Written examination

GRA 60353
 Mathematics

Department of Economics

Start date:	08.01 .2020	Time 13:00
Finish date:	08.01 .2020	Time 16:00

Solutions	Final exam in GRA 6035 Mathematics
Date	January 8th, 2020 at 1300-1600

Question 1.

(a) We use Gaussian elimination to find the rank of A. We use a Gaussian process until we find an echelon form:

$$
A=\left(\begin{array}{cccc}
1 & 2 & -1 & 3 \\
2 & -1 & 3 & 0 \\
1 & 7 & -6 & 9 \\
5 & 0 & 5 & 3
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 2 & -1 & 3 \\
0 & -5 & 5 & -6 \\
0 & 5 & -5 & 6 \\
0 & -10 & 10 & -12
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 2 & -1 & 3 \\
0 & -5 & 5 & -6 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Since there are two pivot positions, we have that $\operatorname{rk}(A)=2$.
(b) Let us call the variables x, y, z, w. From the echelon form that we found in (a), we see that z and w are free, and back substitution gives that $-5 y+5 z-6 w=0$, or $-5 y=-5 z+6 w$, which gives $y=z-6 w / 5$, and that $x+2 y-z+3 w=0$, or $x=-2 y+z-3 w$, which gives $x=-2(z-6 w / 5)+z-3 w=-z-3 w / 5$. Therefore, the solutions are given by

$$
\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{c}
-z-3 w / 5 \\
z-6 w / 5 \\
z \\
w
\end{array}\right)=z \cdot\left(\begin{array}{c}
-1 \\
1 \\
1 \\
0
\end{array}\right)+\frac{w}{5} \cdot\left(\begin{array}{c}
-3 \\
-6 \\
0 \\
5
\end{array}\right)=z \cdot \mathbf{w}_{1}+\frac{w}{5} \cdot \mathbf{w}_{2}
$$

It follows that $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$ is a base of $\operatorname{Null}(A)$, with

$$
\mathbf{w}_{1}=\left(\begin{array}{c}
-1 \\
1 \\
1 \\
0
\end{array}\right), \quad \mathbf{w}_{2}=\left(\begin{array}{c}
-3 \\
-6 \\
0 \\
5
\end{array}\right)
$$

(c) Since there are pivot positions in the first two columns of A, the first two column vectors of A is a base $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ of $\operatorname{Col}(A)$. Since \mathbf{w}_{2} is in $\operatorname{Null}(A)$, we have that

$$
A \cdot \mathbf{w}_{2}=-3 \mathbf{v}_{1}-6 \mathbf{v}_{2}+5 \mathbf{v}_{4}=\mathbf{0} \quad \Rightarrow \quad 5 \mathbf{v}_{4}=3 \mathbf{v}_{1}+6 \mathbf{v}_{2}
$$

Question 2.

(a) We compute $\operatorname{det}(A)$ by cofactor expansion along the first column:

$$
|A|=\left|\begin{array}{lll}
-7 & 6 & 2 \\
-6 & 5 & 2 \\
-6 & 6 & 1
\end{array}\right|=-7(5-12)+6(6-12)-6(12-10)=49-36-12=1
$$

(b) We check if \mathbf{v}_{i} is an eigenvector of A by computing $A \mathbf{v}_{i}$:

$$
\begin{aligned}
& A \mathbf{v}_{1}=\left(\begin{array}{lll}
-7 & 6 & 2 \\
-6 & 5 & 2 \\
-6 & 6 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right)=1 \cdot \mathbf{v}_{1} \\
& A \mathbf{v}_{2}=\left(\begin{array}{lll}
-7 & 6 & 2 \\
-6 & 5 & 2 \\
-6 & 6 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right)=-1 \cdot \mathbf{v}_{2} \\
& A \mathbf{v}_{3}=\left(\begin{array}{lll}
-7 & 6 & 2 \\
-6 & 5 & 2 \\
-6 & 6 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
0 \\
3
\end{array}\right)=\left(\begin{array}{c}
-1 \\
0 \\
-3
\end{array}\right)=-1 \cdot \mathbf{v}_{3}
\end{aligned}
$$

This means that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are eigenvectors of A, with eigenvalues $\lambda_{1}=1, \lambda_{2}=\lambda_{3}=-1$.
(c) It follows from the previous question that $\lambda_{1}=1$ is an eigenvalue of multiplicity one, and that $\lambda=-1$ is an eigenvalue of multiplicity 2 . We have that E_{1} has base $\left\{\mathbf{v}_{1}\right\}$, and since \mathbf{v}_{2} and \mathbf{v}_{3} are clearly linearly independent, E_{-1} has base $\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. Since there are enough eigenvalues and eigenvectors, A is diagonalizable.

Question 3.

(a) We solve the second order linear differential equation $y^{\prime \prime}-11 y^{\prime}+18 y=9 t^{2}-11 t+10$ using superposition. To find the homogeneous solution y_{h}, we consider the homogeneous differential equation $y^{\prime \prime}-11 y^{\prime}+18 y=0$, which has characteristic equation $r^{2}-11 r+18=0$, with roots $r=2$ and $r=9$, and we have $y_{h}=C_{1} e^{2 t}+C_{2} e^{9 t}$. To find a particular solution y_{p}, we consider the differential equation $y^{\prime \prime}-11 y^{\prime}+18 y=9 t^{2}-11 t+10$ and use the method of undetermined coefficients. We start with $f(t)=9 t^{2}-11 t+10$, and compute $f^{\prime}(t)=18 t-11$ and $f^{\prime \prime}(t)=18$. Based on this, we guess the solution $y=A t^{2}+B t+C$, which gives $y^{\prime}=2 A t+B$ and $y^{\prime \prime}=2 A$. When we substitute this into the differential equation, we get

$$
(2 A)-11(2 A t+B)+18\left(A t^{2}+B t+C\right)=9 t^{2}-11 t+10
$$

Collecting terms on the left-hand side, we get

$$
18 A t^{2}+(18 B-22 A) t+(18 C-11 B+2 A)=9 t^{2}-11 t+10
$$

Comparing coefficients, we get $18 A=9$, or $A=1 / 2,18 B-11=-11$, or $B=0$, and $18 C+1=10$, or $C=1 / 2$. This means that $y_{p}=t^{2} / 2+1 / 2$, and the general solution of the differential equation is therefore

$$
y=y_{h}+y_{p}=C_{1} e^{2 t}+C_{2} e^{9 t}+\frac{1}{2} t^{2}+\frac{1}{2}
$$

(b) The differential equation $e^{t} y^{\prime}=t y^{2}$ is separable, since it can be written in the form

$$
y^{\prime}=e^{-t} t y^{2}=\left(t e^{-t}\right) \cdot y^{2} \quad \Rightarrow \quad \frac{1}{y^{2}} y^{\prime}=t e^{-t} \quad \Rightarrow \quad \int \frac{1}{y^{2}} \mathrm{~d} y=\int t e^{-t} \mathrm{~d} t
$$

The integral on the left-hand side can be solved by writing $1 / y^{2}=y^{-2}$, and we obtain

$$
\int \frac{1}{y^{2}} \mathrm{~d} y=\int y^{-2} \mathrm{~d} y=-y^{-1}+C_{1}=-\frac{1}{y}+C_{1}
$$

The integral on the right-hand side can be solved using integration by parts, with $u^{\prime}=e^{-t}$ and $v=t$, which gives $u=-e^{-t}$ and $v^{\prime}=1$, and therefore

$$
\int t e^{-t} \mathrm{~d} t=u v-\int u v^{\prime} \mathrm{d} t=-t e^{-t}-\int\left(-e^{-t}\right) \cdot 1 \mathrm{~d} t=-t e^{-t}-e^{-t}+C_{2}
$$

The general solution can therefore be written as

$$
-\frac{1}{y}+C_{1}=-t e^{-t}-e^{-t}+C_{2} \quad \Rightarrow \quad \frac{1}{y}=t e^{-t}+e^{-t}+C=\frac{t+1+C e^{t}}{e^{t}}
$$

in implicit form, with $C=C_{1}-C_{2}$, and the general solution in explicit form is given by

$$
y=\frac{e^{t}}{t+1+C e^{t}}
$$

(c) The system of differential equations has the form $\mathbf{y}^{\prime}=A \mathbf{y}$ and we find the eigenvalues and eigenvectors of the matrix A : The characteristic equation is

$$
\left|\begin{array}{ccc}
-\lambda & 0 & 2 \\
4 & -2-\lambda & 4 \\
2 & 0 & -\lambda
\end{array}\right|=(-2-\lambda) \cdot\left(\lambda^{2}-4\right)=0
$$

by cofactor expansion along the middle column. This means that $\lambda_{1}=\lambda_{2}=-2, \lambda_{3}=2$. We need to compute a base for E_{-2} and E_{2}. We find the vectors \mathbf{v} in the eigenspace E_{-2} by the Gaussian process

$$
\left(\begin{array}{lll}
2 & 0 & 2 \\
4 & 0 & 4 \\
2 & 0 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
2 & 0 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \Rightarrow \quad \mathbf{v}=y \cdot\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+z \cdot\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

and the vectors \mathbf{v} in the eigenspace E_{2} by the Gaussian process

$$
\left(\begin{array}{ccc}
-2 & 0 & 2 \\
4 & -4 & 4 \\
2 & 0 & -2
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
-2 & 0 & 2 \\
0 & -4 & 8 \\
0 & 0 & 0
\end{array}\right) \Rightarrow \mathbf{v}=z \cdot\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
$$

Since $\operatorname{dim} E_{-2}=2$ and $\operatorname{dim} E_{2}=1, A$ is diagonalizable, and $P^{-1} A P=D$ for the matrices D and P given

$$
D=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 2
\end{array}\right), \quad P=\left(\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right)
$$

If we define new variables u_{1}, u_{2}, u_{3} by $\mathbf{u}=P^{-1} \mathbf{y}$, which can also be written $\mathbf{y}=P \mathbf{u}$, then it follows that

$$
\mathbf{u}^{\prime}=\left(P^{-1} \mathbf{y}\right)^{\prime}=P^{-1} \mathbf{y}^{\prime}=P^{-1} A \mathbf{y}=P^{-1} A P \cdot P^{-1} \mathbf{y}=D \cdot \mathbf{u}
$$

Hence $u_{i}^{\prime}=\lambda_{i} u_{i}$, which gives $u_{i}=C_{i} \cdot e^{\lambda_{i} t}$ for $1 \leq i \leq 3$, and

$$
\mathbf{y}=P \mathbf{u}=\left(\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
C_{1} e^{-2 t} \\
C_{2} e^{-2 t} \\
C_{3} e^{2 t}
\end{array}\right)=C_{1}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) e^{-2 t}+C_{3}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) e^{2 t}
$$

Question 4.

(a) Since f is a quadratic form, we may either use the symmetric matrix A of f, or the Hessian matrix $H(f)=2 A$ of f. We choose to use the symmetric matrix A, which is given by

$$
A=\left(\begin{array}{cccc}
-4 & 0 & 2 & 2 \\
0 & -10 & -2 & 2 \\
2 & -2 & -5 & 3 \\
2 & 2 & 3 & -5
\end{array}\right)
$$

We compute its first leading principal minors $D_{1}=-4<0, D_{2}=40>0$, and

$$
D_{3}=-4(50-4)+2(0+20)=-144<0
$$

Moreover, we have that $D_{4}=|A|=0$ since $H(f)=2 A$ and det $H(f)=2^{4} \cdot|A|=0$. It follows that $\operatorname{rk} A=3$, and A is negative semidefinite by the reduced rank criterion (RRC). Therefore $H(f)=2 A$ is also negative semidefinite, and f is a concave function.
(b) The Lagrangian is $\mathcal{L}=f(x, y, z, w)-\lambda\left(x^{2}+y^{2}+z^{2}+w^{2}\right)$, and the first order conditions (FOC) are given by

$$
\begin{aligned}
\mathcal{L}_{x}^{\prime} & =-8 x+4 z+4 w-\lambda \cdot 2 x=0 \\
\mathcal{L}_{y}^{\prime} & =-20 y-4 z+4 w-\lambda \cdot 2 y=0 \\
\mathcal{L}_{z}^{\prime} & =4 x-4 y-10 z+6 w-\lambda \cdot 2 z=0 \\
\mathcal{L}_{w}^{\prime} & =4 x+4 y+6 z-10 w-\lambda \cdot 2 w=0
\end{aligned}
$$

and the constraint (C) is given by $x^{2}+y^{2}+z^{2}+w^{2}=6$. We see that when $\lambda=-12$, the first order conditions is a linear system, with coefficient matrix

$$
\left(\begin{array}{cccc}
16 & 0 & 4 & 4 \\
0 & 4 & -4 & 4 \\
4 & -4 & 14 & 6 \\
4 & 4 & 6 & 14
\end{array}\right)
$$

We solve the linear system using Gaussian elimination, and start by dividing the first row with 4. We obtain the following echelon form:

$$
\left(\begin{array}{cccc}
4 & 0 & 1 & 1 \\
0 & 4 & -4 & 4 \\
4 & -4 & 14 & 6 \\
4 & 4 & 6 & 14
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
4 & 0 & 1 & 1 \\
0 & 4 & -4 & 4 \\
0 & -4 & 13 & 5 \\
0 & 4 & 5 & 13
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
4 & 0 & 1 & 1 \\
0 & 4 & -4 & 4 \\
0 & 0 & 9 & 9 \\
0 & 0 & 9 & 9
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
4 & 0 & 1 & 1 \\
0 & 4 & -4 & 4 \\
0 & 0 & 9 & 9 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

We see that w is free, and use back substitution to solve the linear system. We have that $9 z+9 w=0$, or $z=-w$, that $4 y-4 z+4 w=0$, or $y=z-w=-2 w$, and that $4 x+z+w=0$,
or $4 x=-z-w=0$, which gives $x=0$. This implies that $(x, y, z, w ; \lambda)=(0,-2 w,-w, w ;-12)$ with w free. We put this into the constraint, and get

$$
x^{2}+y^{2}+z^{2}+w^{2}=0^{2}+(-2 w)^{2}+(-w)^{2}+w^{2}=3 \quad \Rightarrow \quad 6 w^{2}=6
$$

This means that $w^{2}=1$, or $w= \pm 1$. We find the following solutions of the Lagrange conditions with $\lambda=-12$:

$$
(x, y, z, w ; \lambda)=(0,-2,-1,1 ;-12),(0,2,1,-1 ;-12)
$$

(c) We consider the function $h(x, y, z, w)=\mathcal{L}(x, y, z, w ;-12)$ and try to use the SOC to determine whether the candidate points we found in (b) are minimum points. The function h is given by

$$
h(x, y, z, w)=8 x^{2}+2 y^{2}+7 z^{2}+7 w^{2}+4 x z+4 x w-4 y z+4 y w+6 z w
$$

The Hessian matrix of h is given by

$$
H(h)=\left(\begin{array}{cccc}
16 & 0 & 4 & 4 \\
0 & 4 & -4 & 4 \\
4 & -4 & 14 & 6 \\
4 & 4 & 6 & 14
\end{array}\right)
$$

We have $D_{1}=16, D_{2}=64$ and $D_{3}=16(56-16)+4(0-16)=576$. Moreover, $D_{4}=|H(h)|=0$ since $H(h)$ is the matrix from (b), with one free variable. Hence, it follows from the reduced rank condition (RRC) that $H(h)$ is positive semidefinite, and therefore h is convex. By the SOC, this means that the candidate points $(x, y, z, w ; \lambda)=(0,-2,-1,1 ;-12),(0,2,1,-1 ;-12)$ are minimum points. The minimum value is $f(0,2,1,-1)=-72$.
(d) Any candidate point $(x, y, z, w ; \lambda)$ that satisfies $\mathrm{FOC}+\mathrm{C}$ with $\lambda=0$ must be a maximum point. In fact, $h(x, y, z, w)=\mathcal{L}(x, y, z, w ; 0)=f(x, y, z, w)$ is concave, and therefore this follows from the SOC. We try to find such candidate points, and use the FOC from (b) with $\lambda=0$ instead of $\lambda=-12$. The linear system we get has coefficient matrix

$$
\left(\begin{array}{cccc}
-8 & 0 & 4 & 4 \\
0 & -20 & -4 & 4 \\
4 & -4 & -10 & 6 \\
4 & 4 & 6 & -10
\end{array}\right)
$$

This matrix is $2 A$, where A is the symmetric matrix of f, so we know that there will be at least one free variable since $|A|=0$. We use Gaussian elimination, and find an echelon form:

$$
\left(\begin{array}{cccc}
-8 & 0 & 4 & 4 \\
0 & -20 & -4 & 4 \\
4 & -4 & -10 & 6 \\
4 & 4 & 6 & -10
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
-8 & 0 & 4 & 4 \\
0 & -20 & -4 & 4 \\
0 & -4 & -8 & 8 \\
0 & 4 & 8 & -8
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
-8 & 0 & 4 & 4 \\
0 & -4 & -8 & 8 \\
0 & 0 & 36 & -36 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

We switched the two middle rows to make the last operations easier. From this echelon form, we see that w is free, that $z=w$, that $-4 y=8 z-8 w=0$, and that $-8 x=-4 z-4 w=-8 w$, or $x=w$. It follows that $(x, y, z, w)=(w, 0, w, w)$, and the constraint gives

$$
x^{2}+y^{2}+z^{2}+w^{2}=6 \quad \Rightarrow \quad w^{2}+0^{2}+w^{2}+w^{2}=3 w^{2}=6
$$

This gives $w^{2}=2$, or $w= \pm \sqrt{2}$. It follows that there are two candidate points

$$
(x, y, z, w ; \lambda)=(\sqrt{2}, 0, \sqrt{2}, \sqrt{2} ; 0),(-\sqrt{2}, 0,-\sqrt{2},-\sqrt{2} ; 0)
$$

that satisfy $\mathrm{FOC}+\mathrm{C}$. By the comments above, these points are maximum points, with maximum value $f(\sqrt{2}, 0, \sqrt{2}, \sqrt{2})=0$.

