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Question 1.

(a) We use Gaussian elimination to find the rank of A. We start by switching the first two rows
and obtain zeros under the first pivot:

2 1 5 9 -1 1 2 =3 -1 1 2 =3
A -1 1 2 =3 N 2 15 9 N 0 3 9 3
3 01 10 3 01 10 0 3 7 1
0 3 0 —6 0 3 0 —6 0 3 0 —6
Then we obtain zeros under the next pivots:

-1 1 2 =3 -1 1 2 =3 -1 1 2 =3

0 3 9 3 N 0o 3 9 3 N 0 3 9 3

0 3 7 1 0 0 -2 -2 0 0 —2 -2

0 3 0 —6 0 0 -9 -9 0 0 0 O

Since there are three pivot positions, we have that rk(A) = 3.

(b) We have that dim Null(A) =n —rk(A) = 4 — 3 = 1 since the dimension equals the number of
degrees of freedom. Let us call the variables x,y, z, w. From the echelon form that we found
in (a), we see that w is free, and back substitution gives that —2z — 2w = 0, or z = —w, that

3y+924+3w=3y+9(—w)+3w=0 = 3y=6w = y=2w
and that
—x4+y+2z-3w=—-4+2w+2(-w)-3w=0 = —-=2r=3w = z=-3w

Therefore, the solutions are given by

x —3w -3 -3
Yyl = 2w =w- 2 =w-v with v= 2
z —w -1 —1
w w 1 1

and therefore B = {v} is a base of Null(A).
(c) Since v is in Null(A), we have that A-v = 0, and it follows that

Av==3vi+2vo—v3+vy=0 = vyg=3vi—2vy+v3
Question 2.

(a) We check if v is an eigenvector of A by computing Av:

4 0 6 -3 0
Av=[-1 3 0| -[{-1| =10
1 1 2 2 0
Since Av = 0, we have that Av = Av with A = 0, and v is an eigenvector of A with eigenvalue

A=0.
(b) We solve the characteristic equation to find the eigenvalues of A, given by
4— A 0 6
det(A—XI)=| =1 3-—2A 0 |=0
1 1 2—A
We use cofactor expansion along the first row to compute the determinant, and get
A=M(B=N2=X)=0)+6(—1—-3-X)=4—-N(A=5X+6)+6(\—4)
We see that A — 4 is a common factor, and write the characteristic equation in factorized form
(4= N\ =5 +6-6)=0

This gives A = 4, or A2 —5\ = 0, which gives A = 0 or A = 5. We conclude that the eigenvalues
of Aare A\ =0, A =4, A =5.
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Since A is a 3 x 3 matrix with three distinct eigenvalues, if follows that A is diagonalizable. In
fact, the eigenspaces Ey, F4 and E5 all have dimension one, and therefore there are eigenvectors
V1, V2, v3 in the three eigenspaces such that P~'AP is diagonal when P = (vi|va|v3). In
fact, we can use vy = v as the first eigenvector.

Question 3.

(a)

We solve the first order linear differential equation y' —4y = 10 e~ using superposition. To find
the homogeneous solution ¥, we consider the homogeneous differential equation 3y’ — 4y = 0,
which has characteristic equation r — 4 = 0, with root r = 4, and we have y, = Ce*. To
find the particular solution y,, we consider the differential equation y' — 4y = 10e~" and
use the method of undetermined coefficients. We start with f(t) = 10e~!, and compute
f'(t) = —10e~t. Based on this, we guess the solution y = Ae~t, which gives ¢/ = —Ae™t.
When we substitute this into the differential equation, we get

(—Ae™ ) —4(Ae ) =10e" = —BAe'=10e""

Comparing coefficients, we get —5A4 = 10, or A = —2, and y, = —2e~*. The general solution
of the differential equation is therefore

y=uyn+yy=Ce' — 27"

Alternatively, it is possible to solve the differential equation using integrating factor.
We try to solve the differential equation 2t + 2ty? + (2y + 2yt2)y’ = 0 as an exact differential
equation, and look for a function h = h(t,y) such that

hy =2t +2ty®, i, =2y + 2yt>
From the first condition, we get that h = ¢> + t>y? + ¢(y), and when we substitute this into
the second condition, we get
hy = (0 + 129" + 6(y)), =0+ 1% 2y + ¢/ (y) = 2yt* + ¢ (y) = 2y + 2yt°

We see that this is satisfied if ¢'(y) = 2y, and we may choose ¢(y) = y>. Therefore, the
diffential equation is in exact form hj + hy y' = 0 for h(t,y) = t* + t*y* + y*, and the general
solution is given by

C—t?

1+¢?
Alternatively, it is possible to solve the differential equation as a separable differential equation,
since it can be written in the form

h(t,y):t2+t2y2—|—y2:C = y2(1+t2):C—t2 = y==

,_ 2t 4y%) =2t P+

22 +1) #2+1 2y
The system of differential equations can be written in the form y’ = Ay, where A is the matrix
in Question 2. We found that A is diagonalizable in 2 (c), with eigenvalues A = 0, A = 4 and

A = 5. The vector v from Question 2 can be used as a base for Ey, and we need to compute
a base for F4 and E5. We find the vectors v in the eigenspace F4 by the Gaussian process

(> + 1)y = —2t(1+¢y%) =

4—4 0 6 1 1 =2 1 1 =2 -1
-1 3—-4 0 - !1-1 -1 0} —[(0 0 -2 = v=y-| 1
1 1 2—-4 0O 0 © 00 O 0
and the vectors v in the eigenspace F5 by the Gaussian process
4-5 0 6 1 1 =3 -1 0 6 6
-1 3-5 0 - 1!1-1 -2 0] -0 -1 -3 = v=z-|-3
1 1 2-5 -1 0 6 0 0 O 1
This means that P~ AP = D for the matrices D and P given by eigenvalues and eigenvectors:
0 00 -3 -1 6
D=0 4 0), P=|-1 1 =3
0 0 5 2 0 1
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If we define new variables w1, us, us by u = P~ 'y, which can also be written y = Pu, then it
follows that

u=Plyy=Ply=P Ay =P 'AP.-P 'y =D u

Hence ] = A\;ju;, which gives u; = C; - Mt for 1 <4 < 3, and

-3 -1 6 Cy e -3 -1 6
y=Pu=|-1 1 =3]-|Cs el =Cci | -1 +0y 1 |+ Cs | =3¢
2 0 1 C3 et 2 0 1

Question 4.

(a) The Hessian matrix of f is given by H(f) = 2A, where A is the symmetric matrix of the
quadratic form, or

We have leading principal minors D; =2, Dy =4 — 1 = 3, and D3 = |A| is given by cofactor
expansion along the first row:
2 -1 1
Ds=|-1 2 —1|=24-1)—(—-D(-2+1)+11-2)=4
1 -1 2
Since all leading principal minors are positive, H(f) is positive definite, and f is a convex
function.
(b) The Lagrangian of the Lagrange problem is £ = 2% + y? + 22 — 2y + 22 —yz — Mz +y + 2),
and the first order conditions (FOC) are
L=2z—y+z—A=0
! —
L,=—-2+2y—2—-A=0
Lo=x—-—y+22—A=0
and the constraint (C) is given by x + y + z = 11. We see that the Lagrange conditions is a
linear system, with augmented matrix
2 -1 1 —-1] 0
-1 2 -1 —-1] 0
1 -1 2 =11 0
1 1 1 0] 11

We solve the linear system using Gaussian elimination, and start by switching the second row
to the first row:

1 1 0 —2] 0 1 1 0 -2 0 1 10 —2] 0
1 2 -1 —1] 0 0 3 —1 —3| 0 0 11 —2| 0
1 -1 2 —1lo|l 7o = 2 10l 7 lo o1 2/n
1 1 1 o1 0 o0 1 2|11 0 -2 2 1| 0

In the last step, we added the third row to the second row, and switched the third and fourth
row. Then we continue until we get an ecehelon form:

110 2|0 110 -2 o0
011 —2| 0 011 —2| o0
001 2/11]l 7 loo1 2 11
004 —3| 0 00 0 —11]|—44

From the echelon form, we use back substitution to solve the linear system, and find that
A=4 that z=11-2-4=3, that y=—-3+2-4 =25, and that z = -5+ 2-4 = 3. From
this computation, it follows that (z,y, z; A) = (3,5, 3;4) is the unique solution of the Lagrange
conditions FOC+C. We use the SOC, and see that

h(z,y,2) = L(x,y,2;4) = f(2,y,2) —4(x +y + 2)
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has the same Hessian matrix as f. Since f is convex from (a), the same applies to h, and
fmin = £(3,5,3) = 22 by the SOC.
(c) By the envelope theorem, the optimal value function f*(a) of the Lagrange problem
min f(x,y,2) = 2®> +9* + 2* — 2y + 22 — yz subject tox +y + 2 =a
has derivative df*(a)/da = A\*(a), and A*(11) = 4 at a = 11 by the computation in (b). Hence,
we estimate that the minimum value

F510) ~ f*(11) 4+ (10 —11) - 4 =22 — 4 = 18

Question 5.
Using eigenvalues and eigenvectors from Question 3 (c), we have that

-3 -1 6
yi=Cr | —1|0ot+Cy 1 |4 +C5]-3]5
2 0 1
This means that for ¢ > 1, we get the general solution
-1 6
yi=Co| 1 |4 4+C3-3]|5"
0 1
For t = 0, we have that
-3 -1 6
yo=Ci|-1|+Co| 1 | +C3( -3
2 0 1
We solve the equation given by the initial condition using Gaussian elimination:
-3 -1 6|1 -1 1 -3 1 -1 1 =31
-1 1 -3|1] — 0 -4 —-15|-2| — 0 2 —-513
2 0 1|1 0 2 5] 3 0 0 54
This gives C3 = 4/5, Cy = 7/2, and C1 = 1/10 by back substitution, and the particular solution is
7 -1 4 6 1
yi=g 1 4t+g —3|5 fort>1, yo=[1
0 1 1



