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Question 1.

(a) We compute the leading principal minors of A, and find that D1 = 2, D2 = 4 − 1 = 3,
D3 = 3D2 = 9, and

D4 = 2 · 2 · (−9− 16)− 1 · 1 · (−9− 16) = (4− 1)(−25) = −75

Since D4 < 0, we conclude that A is indefinite. Alternatively, it is possible to see this from
the fact A has both positive and negative principal minors of order one, since ∆1 = 2, 2, 3,−3.

(b) The eigenvectors of A with eigenvalue λ = −5 are the solutions of (A + 5I) · x = 0. We use
Gaussian elimination to find these solutions:

7 1 0 0 0
1 7 0 0 0
0 0 8 4 0
0 0 4 2 0

 →


1 7 0 0 0
7 1 0 0 0
0 0 8 4 0
0 0 4 2 0

 →


1 7 0 0 0
0 −48 0 0 0
0 0 8 4 0
0 0 0 0 0


We see that there is one free variable, so dimE−5 = 1. Backward substitution gives 8z+4w = 0,
or z = −w/2, that −48y = 0, or y = 0, and that x+7y = 0, or x = −7y = 0. The eigenvectors
are therefore given by

x =


0
0

−w/2
w

 = w ·


0
0
−1/2

1

 = w · v with v =


0
0
−1/2

1


The eigenvectors can therefore be written as E−5 = span(v).

(c) By definition, dim Null(A− rI) ≥ 1 if and only if det(A− rI) = 0, or if r is an eigenvalue for
A. We compute the eigenvalues:

det(A− rI) =

∣∣∣∣∣∣∣∣
2− r 1 0 0

1 2− r 0 0
0 0 3− r 4
0 0 4 −3− r

∣∣∣∣∣∣∣∣ = 0

To simplify the computation, we first compute the 2-minor in the lower right corner, which is
(3 − r)(−3 − r) − 16 = r2 − 9 − 16 = r2 − 25. We then compute the full determinant using
cofactor expansion along the first row:

(2− r)(2− r) · (r2 − 25)− 1 · 1 · (r2 − 25) = ((2− r)2 − 1) · (r2 − 25) = 0

We end up with the equation (r2 − 4r + 3)(r2 − 25) = 0, with solutions r = 1, r = 3, r = 5
and r = −5. Hence A has eigenvalues r = 1, 3, 5,−5.

Question 2.

(a) The differential equation 4y′′ − 4y′ − 3y = 9t is second order linear and we can solve it using
superposition. To find the homogeneous solution yh, we consider the homogeneous differential
equation 4y′′ − 4y′ − 3y = 0, which has characteristic equation 4r2 − 4r − 3 = 0, with two
distinct solutions r = 3/2 and r = −1/2. Therefore, we have

yh = C1 e
3t/2 + C2 e

−t/2

To find the particular solution yp, we consider the differential equation 4y′′−4y′−3y = 9t and
use the method of undetermined coefficients. We start with f(t) = 9t, and compute f ′ = 9
and f ′′ = 0. Based on this, we guess the solution y = At+B, which gives y′ = A and y′′ = 0.
When we substitute this into the differential equation, we get

−4A− 3(At+B) = 9t

Comparing coefficients, we get −3A = 9 and −4A− 3B = 0, or A = −3 and B = 4, and

yp = −3t+ 4
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The general solution of the differential equation is therefore

y = yh + yp = C1 e
3t/2 + C2 e

−t/2 − 3t+ 4

(b) The differential equation 4ty′ + 4y = 1 can be written 4y − 1 + 4ty′ = 0, and we try to solve
it as an exact differential equation, and look for a function h(t, y) such that

h′t = 4y − 1, h′y = 4t

We see that h = 4ty − t is one solution, so the differential equation is exact and the general
solutions is given by

4ty − t = C ⇒ y =
C + t

4t

(c) The system of differential equations can be written in the form y′ = A · y, where

A =

(
1 2
0 5

)
, y =

(
y1
y2

)
We find the eigenvalues and eigenvectors of A: The eigenvalues of A are the diagonal entries
λ1 = 1 and λ2 = 5, since A is upper triangular. Since all eigenvalues have multiplicity one,
the eigenspaces are one-dimensinal and can be written E1 = span(v1) and E5 = span(v2). In
fact, we may choose

v1 =

(
1
0

)
, v2 =

(
1
2

)
since we have that

A− λ1I =

(
0 2
0 4

)
, A− λ2I =

(
−4 2
0 0

)
Since A is diagonalizable, with enough eigenvalues and eigenvectors, we have that the general
solution is

y = C1v1 e
λ1t + C2v2 e

λ2t = C1

(
1
0

)
et + C2

(
1
2

)
e5t =

(
C1 e

t + C2 e
5t

2C2 e
5t

)
Alternatively, we could solve the second equation y′2 = 5y2 as a linear differential equation,
which gives y2 = C2 e

5t, and then substitute this in the first differential equation, and get

y′1 = y1 + 2y2 = y1 + 2C2 e
5t ⇒ y′1 − y1 = 2C2 e

5t

We can solve this as a linear differential equation, and get y1 = yh1 + yp1 = C1 e
t + 1

2C2 e
5t.

Question 3.

(a) The first order partial derivatives of f(x, y, z) = 3x2 + y2 + axy − y + 2z4 + 8z + 12 and the
FOC’s are given by

f ′x = 6x+ ay = 0, f ′y = 2y + ax− 1 = 0, f ′z = 8z3 + 8 = 0

When a = 3, the last FOC gives 8z3 = −8, or z = −1, and the first FOC gives y = −2x.
Substituting this in the middle FOC, we get −4x + 3x − 1 = 0, or x = −1, and this gives
y = −2x = 2. There is a unique stationary point when a = 3, given by (x, y, z) = (−1, 2,−1).

(b) The Hessian matrix of f is given by

H(f) =

6 a 0
a 2 0
0 0 24z2


For all x, y, z, we have that D1 = 6 > 0, that D2 = 12− a2, and that D3 = 24z2(12− a2). We
know that f is convex if and only ifH(f) is positive semi-definite for all x, y, z. So if f is convex,
then D2 = 12 − a2 ≥ 0. Conversely, if 12 − a2 ≥ 0, then D1, D2, D3 ≥ 0, and all principal
minors ∆1 = 6, 2, 24z2 ≥ 0, ∆2 = 12− a2, 144z2, 48z2 ≥ 0, and ∆3 = 24z2(12− a2) ≥ 0, which
means that f is convex. It follows that f is convex if and only if a2 ≤ 12, or −

√
12 ≤ a ≤

√
12.
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(c) When a = 3, it follows from (b) that f is convex, and the stationary point (−1, 2,−1) found
in (a) is a global minimum point, with minimum value f∗(3) = f(−1, 2,−1) = 5. By the
envelope theorem, we have that

df∗(a)

da
= f ′a(x

∗(a), y∗(a), z∗(a))

Since f ′a = xy, it follows that df∗(a)/da = x∗(a) · y∗(a), and df∗(a)/da = (−1) · 2 = −2 at
a = 3. This means that the minimum value is

f∗(a) ≈ f∗(3) + ∆a · df
∗(a)

da
= 5 + (a− 3)(−2) = 11− 2a

when a is close to 3. Note that f is convex when a is close to 3 by (b), and there are stationary
points of f such that a global minimum exists.

Question 4.

(a) The Lagrangian is L = 2x2 + 2xy + 2y2 + 3z2 + 8zw − 3w2 − λ(x2 + y2 + z2 + w2). The first
order conditions (FOC) are

L′x = 4x+ 2y − λ(2x) = 0

L′y = 2x+ 4y − λ(2y) = 0

L′z = 6z + 8w − λ(2z) = 0

L′w = 8z − 6w − λ(2w) = 0

and the constraint (C) is given by x2 + y2 + z2 + w2 = 1. The Lagrange conditions are
FOC+C.

(b) When λ = −5, the first order conditions become

L′x = 4x+ 2y + 10x = 0

L′y = 2x+ 4y + 10y = 0

L′z = 6z + 8w + 10z = 0

L′w = 8z − 6w + 10w = 0

The two first FOC’s give 14x + 2y = 0, or y = −7x, and 2x + 14y = 2x + 14(−7x) = 0, or
−96x = 0. This gives x = y = 0. The last two FOC’s give 16z + 8w = 0, or w = −2z, and
8z + 4w = 8z + 4(−2z) = 0, or 0z = 0. This gives z = −w/2 and w free, and the solutions
of the FOC’s are therefore given by (x, y, z, w) = (0, 0,−w/2, w) with w free. Alternatively,
we could find these solutions using Gaussian elimnation, as the FOC’s are linear. Finally, the
constraint gives (−w/2)2 +w2 = 1, or 5w2/4 = 1. This implies that w2 = 4/5, or w = ±2/

√
5.

The points with λ = −5 that satisfy the Lagrange conditions are therefore

(x, y, z, w;λ) = (0, 0,−1/
√

5, 2/
√

5;−5), (0, 0, 1/
√

5,−2/
√

5;−5)

(c) We apply the SOC (second order condition) to the candidate points (0, 0,∓− 1/
√

5,±2/
√

5)
with λ = −5: By the SOC, these points are solutions of the Lagrange problem if the function

h(x, y, z, w) = L(x, y, z, w;−5)

= 2x2 + 2xy + 2y2 + 3z2 + 8zw − 3w2 + 5(x2 + y2 + z2 + w2)

= 7x2 + 2xy + 7y2 + 8z2 + 8zw + 2w2

is convex. The Hessian matrix of h is

H(h) =


14 2 0 0
2 14 0 0
0 0 16 8
0 0 8 4


We compute its leading principal minors, which are D1 = 14 > 0, D2 = 196 − 4 = 192 > 0,
D3 = 16D2 > 0 and

D4 = 14 · 14 · (16 · 4− 82)− 2 · 2 · (16 · 4− 82) = 0
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Alternatively, we could see that D4 = 0 from the fact that the last row in H(h) is 1/2 times the
third row. Since D1, D2, D3 > 0 and D4 = 0, it follows that rkH(h) = 3 and H(h) is positive
semi-definite by the RRC (reduced rank condition). Hence h is convex, and by the SOC, the
candidates found in (b) solves the Lagrange problem, with f∗min = f(0, 0,−1/

√
5, 2/
√

5) = −5.

Question 5.

The objective function is the quadratic form f(x) = xTAx with symmetric matrix A, where A is
the matrix from Question 1, and the constraint can be written as g(x, y, z, w) ≤ 1, where g is the
quadratic form g(x) = xT Ix with symmetric matrix I, the identity matrix. This means that the
Lagrangian of the Kuhn-Tucker problem is the quadratic form given by

L(x, y, z, w;λ) = xTAx− λ(xT Ix) = xT (A− λI)x

It follows that the first order conditions is a linear system, and it can be written as

2(A− λI)x = 0 ⇒ (A− λI)x = 0

Therefore, we have that (x;λ) is a solution of the FOC’s if and only if x is an eigenvector of A with
eigenvalue λ. If λ = 0, then FOC’s implies that x = 0 since λ = 0 is not an eigenvalue; the eigenvalues
of A are λ = 1, 3, 5,−5 from Question 1(c). We therefore get the candidate point (0, 0, 0, 0; 0) with
f = 0 from the non-binding case. In the binding case g(x) = 1, any solution of the FOC’s is an
eigenvector with eigenvalue λ 6= 0. For each possible eigenvalue λ > 0, there are two points that
satisfy the constraint: In fact, Eλ = span(v) since all eigenvalues have multiplicty one, and x = cv
gives

g(x) = xTx = (cv)T (cv) = c2vTv = 1 ⇒ c = ±
√

1

vTv

which gives two vectors since vTv > 0. For each of these two vectors in Eλ that satisfy the constraint,
we have

f(x) = xTAx = xTλx = λxT Ix = λ · 1 = λ

The best candidate for maximum is therefore one of the two eigenvectors with maximal eigenvalue
λ = 5 that satisfies the constraint. It is clear that the constraint give a bounded set of admissible
points, so the problem has a maximum by the EVT (extreme value theorem). Finally, the NDCQ is
satisfied for all admissible points. We can therefore conclude that f∗max = 5 is the maximum value of
the Kuhn-Tucker problem.
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