EVALUATION GUIDELINES - Written examination

GRA 60353
 Mathematics

Department of Economics

Start date:	07.01 .2019	Time 13:00
Finish date:	07.01 .2019	Time 16:00

Question 1.

(a) We compute the leading principal minors of A, and find that $D_{1}=2, D_{2}=4-1=3$, $D_{3}=3 D_{2}=9$, and

$$
D_{4}=2 \cdot 2 \cdot(-9-16)-1 \cdot 1 \cdot(-9-16)=(4-1)(-25)=-75
$$

Since $D_{4}<0$, we conclude that A is indefinite. Alternatively, it is possible to see this from the fact A has both positive and negative principal minors of order one, since $\Delta_{1}=2,2,3,-3$.
(b) The eigenvectors of A with eigenvalue $\lambda=-5$ are the solutions of $(A+5 I) \cdot \mathbf{x}=\mathbf{0}$. We use Gaussian elimination to find these solutions:

$$
\left(\begin{array}{llll|l}
7 & 1 & 0 & 0 & 0 \\
1 & 7 & 0 & 0 & 0 \\
0 & 0 & 8 & 4 & 0 \\
0 & 0 & 4 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|r}
1 & 7 & 0 & 0 & 0 \\
7 & 1 & 0 & 0 & 0 \\
0 & 0 & 8 & 4 & 0 \\
0 & 0 & 4 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|r}
1 & 7 & 0 & 0 & 0 \\
0 & -48 & 0 & 0 & 0 \\
0 & 0 & 8 & 4 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

We see that there is one free variable, so $\operatorname{dim} E_{-5}=1$. Backward substitution gives $8 z+4 w=0$, or $z=-w / 2$, that $-48 y=0$, or $y=0$, and that $x+7 y=0$, or $x=-7 y=0$. The eigenvectors are therefore given by

$$
\mathbf{x}=\left(\begin{array}{c}
0 \\
0 \\
-w / 2 \\
w
\end{array}\right)=w \cdot\left(\begin{array}{c}
0 \\
0 \\
-1 / 2 \\
1
\end{array}\right)=w \cdot \mathbf{v} \quad \text { with } \mathbf{v}=\left(\begin{array}{c}
0 \\
0 \\
-1 / 2 \\
1
\end{array}\right)
$$

The eigenvectors can therefore be written as $E_{-5}=\operatorname{span}(v)$.
(c) By definition, $\operatorname{dim} \operatorname{Null}(A-r I) \geq 1$ if and only if $\operatorname{det}(A-r I)=0$, or if r is an eigenvalue for A. We compute the eigenvalues:

$$
\operatorname{det}(A-r I)=\left|\begin{array}{cccc}
2-r & 1 & 0 & 0 \\
1 & 2-r & 0 & 0 \\
0 & 0 & 3-r & 4 \\
0 & 0 & 4 & -3-r
\end{array}\right|=0
$$

To simplify the computation, we first compute the 2-minor in the lower right corner, which is $(3-r)(-3-r)-16=r^{2}-9-16=r^{2}-25$. We then compute the full determinant using cofactor expansion along the first row:

$$
(2-r)(2-r) \cdot\left(r^{2}-25\right)-1 \cdot 1 \cdot\left(r^{2}-25\right)=\left((2-r)^{2}-1\right) \cdot\left(r^{2}-25\right)=0
$$

We end up with the equation $\left(r^{2}-4 r+3\right)\left(r^{2}-25\right)=0$, with solutions $r=1, r=3, r=5$ and $r=-5$. Hence A has eigenvalues $r=1,3,5,-5$.

Question 2.

(a) The differential equation $4 y^{\prime \prime}-4 y^{\prime}-3 y=9 t$ is second order linear and we can solve it using superposition. To find the homogeneous solution y_{h}, we consider the homogeneous differential equation $4 y^{\prime \prime}-4 y^{\prime}-3 y=0$, which has characteristic equation $4 r^{2}-4 r-3=0$, with two distinct solutions $r=3 / 2$ and $r=-1 / 2$. Therefore, we have

$$
y_{h}=C_{1} e^{3 t / 2}+C_{2} e^{-t / 2}
$$

To find the particular solution y_{p}, we consider the differential equation $4 y^{\prime \prime}-4 y^{\prime}-3 y=9 t$ and use the method of undetermined coefficients. We start with $f(t)=9 t$, and compute $f^{\prime}=9$ and $f^{\prime \prime}=0$. Based on this, we guess the solution $y=A t+B$, which gives $y^{\prime}=A$ and $y^{\prime \prime}=0$. When we substitute this into the differential equation, we get

$$
-4 A-3(A t+B)=9 t
$$

Comparing coefficients, we get $-3 A=9$ and $-4 A-3 B=0$, or $A=-3$ and $B=4$, and

$$
\begin{gathered}
y_{p}=-3 t+4 \\
1
\end{gathered}
$$

The general solution of the differential equation is therefore

$$
y=y_{h}+y_{p}=C_{1} e^{3 t / 2}+C_{2} e^{-t / 2}-3 t+4
$$

(b) The differential equation $4 t y^{\prime}+4 y=1$ can be written $4 y-1+4 t y^{\prime}=0$, and we try to solve it as an exact differential equation, and look for a function $h(t, y)$ such that

$$
h_{t}^{\prime}=4 y-1, \quad h_{y}^{\prime}=4 t
$$

We see that $h=4 t y-t$ is one solution, so the differential equation is exact and the general solutions is given by

$$
4 t y-t=C \quad \Rightarrow \quad y=\frac{C+t}{4 t}
$$

(c) The system of differential equations can be written in the form $\mathbf{y}^{\prime}=A \cdot \mathbf{y}$, where

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 5
\end{array}\right), \quad \mathbf{y}=\binom{y_{1}}{y_{2}}
$$

We find the eigenvalues and eigenvectors of A : The eigenvalues of A are the diagonal entries $\lambda_{1}=1$ and $\lambda_{2}=5$, since A is upper triangular. Since all eigenvalues have multiplicity one, the eigenspaces are one-dimensinal and can be written $E_{1}=\operatorname{span}\left(\mathbf{v}_{1}\right)$ and $E_{5}=\operatorname{span}\left(\mathbf{v}_{2}\right)$. In fact, we may choose

$$
\mathbf{v}_{1}=\binom{1}{0}, \quad \mathbf{v}_{2}=\binom{1}{2}
$$

since we have that

$$
A-\lambda_{1} I=\left(\begin{array}{ll}
0 & 2 \\
0 & 4
\end{array}\right), \quad A-\lambda_{2} I=\left(\begin{array}{cc}
-4 & 2 \\
0 & 0
\end{array}\right)
$$

Since A is diagonalizable, with enough eigenvalues and eigenvectors, we have that the general solution is

$$
\mathbf{y}=C_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+C_{2} \mathbf{v}_{2} e^{\lambda_{2} t}=C_{1}\binom{1}{0} e^{t}+C_{2}\binom{1}{2} e^{5 t}=\left(\begin{array}{c}
\left.C_{1} e^{t}+\begin{array}{c}
C_{2} e^{5 t} \\
\\
2 C_{2} e^{5 t}
\end{array}\right)
\end{array}\right.
$$

Alternatively, we could solve the second equation $y_{2}^{\prime}=5 y_{2}$ as a linear differential equation, which gives $y_{2}=C_{2} e^{5 t}$, and then substitute this in the first differential equation, and get

$$
y_{1}^{\prime}=y_{1}+2 y_{2}=y_{1}+2 C_{2} e^{5 t} \quad \Rightarrow \quad y_{1}^{\prime}-y_{1}=2 C_{2} e^{5 t}
$$

We can solve this as a linear differential equation, and get $y_{1}=y_{1}^{h}+y_{1}^{p}=C_{1} e^{t}+\frac{1}{2} C_{2} e^{5 t}$.

Question 3.

(a) The first order partial derivatives of $f(x, y, z)=3 x^{2}+y^{2}+a x y-y+2 z^{4}+8 z+12$ and the FOC's are given by

$$
f_{x}^{\prime}=6 x+a y=0, \quad f_{y}^{\prime}=2 y+a x-1=0, \quad f_{z}^{\prime}=8 z^{3}+8=0
$$

When $a=3$, the last FOC gives $8 z^{3}=-8$, or $z=-1$, and the first FOC gives $y=-2 x$. Substituting this in the middle FOC, we get $-4 x+3 x-1=0$, or $x=-1$, and this gives $y=-2 x=2$. There is a unique stationary point when $a=3$, given by $(x, y, z)=(-1,2,-1)$.
(b) The Hessian matrix of f is given by

$$
H(f)=\left(\begin{array}{ccc}
6 & a & 0 \\
a & 2 & 0 \\
0 & 0 & 24 z^{2}
\end{array}\right)
$$

For all x, y, z, we have that $D_{1}=6>0$, that $D_{2}=12-a^{2}$, and that $D_{3}=24 z^{2}\left(12-a^{2}\right)$. We know that f is convex if and only if $H(f)$ is positive semi-definite for all x, y, z. So if f is convex, then $D_{2}=12-a^{2} \geq 0$. Conversely, if $12-a^{2} \geq 0$, then $D_{1}, D_{2}, D_{3} \geq 0$, and all principal minors $\Delta_{1}=6,2,24 z^{2} \geq 0, \Delta_{2}=12-a^{2}, 144 z^{2}, 48 z^{2} \geq 0$, and $\Delta_{3}=24 z^{2}\left(12-a^{2}\right) \geq 0$, which means that f is convex. It follows that f is convex if and only if $a^{2} \leq 12$, or $-\sqrt{12} \leq a \leq \sqrt{12}$.
(c) When $a=3$, it follows from (b) that f is convex, and the stationary point $(-1,2,-1)$ found in (a) is a global minimum point, with minimum value $f^{*}(3)=f(-1,2,-1)=5$. By the envelope theorem, we have that

$$
\frac{d f^{*}(a)}{d a}=f_{a}^{\prime}\left(x^{*}(a), y^{*}(a), z^{*}(a)\right)
$$

Since $f_{a}^{\prime}=x y$, it follows that $d f^{*}(a) / d a=x^{*}(a) \cdot y^{*}(a)$, and $d f^{*}(a) / d a=(-1) \cdot 2=-2$ at $a=3$. This means that the minimum value is

$$
f^{*}(a) \approx f^{*}(3)+\Delta a \cdot \frac{d f^{*}(a)}{d a}=5+(a-3)(-2)=11-2 a
$$

when a is close to 3 . Note that f is convex when a is close to 3 by (b), and there are stationary points of f such that a global minimum exists.

Question 4.

(a) The Lagrangian is $\mathcal{L}=2 x^{2}+2 x y+2 y^{2}+3 z^{2}+8 z w-3 w^{2}-\lambda\left(x^{2}+y^{2}+z^{2}+w^{2}\right)$. The first order conditions (FOC) are

$$
\begin{aligned}
& \mathcal{L}_{x}^{\prime}=4 x+2 y-\lambda(2 x)=0 \\
& \mathcal{L}_{y}^{\prime}=2 x+4 y-\lambda(2 y)=0 \\
& \mathcal{L}_{z}^{\prime}=6 z+8 w-\lambda(2 z)=0 \\
& \mathcal{L}_{w}^{\prime}=8 z-6 w-\lambda(2 w)=0
\end{aligned}
$$

and the constraint (C) is given by $x^{2}+y^{2}+z^{2}+w^{2}=1$. The Lagrange conditions are $\mathrm{FOC}+\mathrm{C}$.
(b) When $\lambda=-5$, the first order conditions become

$$
\begin{aligned}
\mathcal{L}_{x}^{\prime} & =4 x+2 y+10 x=0 \\
\mathcal{L}_{y}^{\prime} & =2 x+4 y+10 y=0 \\
\mathcal{L}_{z}^{\prime} & =6 z+8 w+10 z=0 \\
\mathcal{L}_{w}^{\prime} & =8 z-6 w+10 w=0
\end{aligned}
$$

The two first FOC's give $14 x+2 y=0$, or $y=-7 x$, and $2 x+14 y=2 x+14(-7 x)=0$, or $-96 x=0$. This gives $x=y=0$. The last two FOC's give $16 z+8 w=0$, or $w=-2 z$, and $8 z+4 w=8 z+4(-2 z)=0$, or $0 z=0$. This gives $z=-w / 2$ and w free, and the solutions of the FOC's are therefore given by $(x, y, z, w)=(0,0,-w / 2, w)$ with w free. Alternatively, we could find these solutions using Gaussian elimnation, as the FOC's are linear. Finally, the constraint gives $(-w / 2)^{2}+w^{2}=1$, or $5 w^{2} / 4=1$. This implies that $w^{2}=4 / 5$, or $w= \pm 2 / \sqrt{5}$. The points with $\lambda=-5$ that satisfy the Lagrange conditions are therefore

$$
(x, y, z, w ; \lambda)=(0,0,-1 / \sqrt{5}, 2 / \sqrt{5} ;-5),(0,0,1 / \sqrt{5},-2 / \sqrt{5} ;-5)
$$

(c) We apply the SOC (second order condition) to the candidate points ($0,0, \mp-1 / \sqrt{5}, \pm 2 / \sqrt{5}$) with $\lambda=-5$: By the SOC, these points are solutions of the Lagrange problem if the function

$$
\begin{aligned}
h(x, y, z, w) & =\mathcal{L}(x, y, z, w ;-5) \\
& =2 x^{2}+2 x y+2 y^{2}+3 z^{2}+8 z w-3 w^{2}+5\left(x^{2}+y^{2}+z^{2}+w^{2}\right) \\
& =7 x^{2}+2 x y+7 y^{2}+8 z^{2}+8 z w+2 w^{2}
\end{aligned}
$$

is convex. The Hessian matrix of h is

$$
H(h)=\left(\begin{array}{cccc}
14 & 2 & 0 & 0 \\
2 & 14 & 0 & 0 \\
0 & 0 & 16 & 8 \\
0 & 0 & 8 & 4
\end{array}\right)
$$

We compute its leading principal minors, which are $D_{1}=14>0, D_{2}=196-4=192>0$, $D_{3}=16 D_{2}>0$ and

$$
D_{4}=14 \cdot 14 \cdot\left(16 \cdot 4-8^{2}\right)-2 \cdot 2 \cdot\left(16 \cdot 4-8^{2}\right)=0
$$

Alternatively, we could see that $D_{4}=0$ from the fact that the last row in $H(h)$ is $1 / 2$ times the third row. Since $D_{1}, D_{2}, D_{3}>0$ and $D_{4}=0$, it follows that rk $H(h)=3$ and $H(h)$ is positive semi-definite by the RRC (reduced rank condition). Hence h is convex, and by the SOC, the candidates found in (b) solves the Lagrange problem, with $f_{\min }^{*}=f(0,0,-1 / \sqrt{5}, 2 / \sqrt{5})=-5$.

Question 5.

The objective function is the quadratic form $f(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$ with symmetric matrix A, where A is the matrix from Question 1, and the constraint can be written as $g(x, y, z, w) \leq 1$, where g is the quadratic form $g(\mathbf{x})=\mathbf{x}^{T} I \mathbf{x}$ with symmetric matrix I, the identity matrix. This means that the Lagrangian of the Kuhn-Tucker problem is the quadratic form given by

$$
\mathcal{L}(x, y, z, w ; \lambda)=\mathbf{x}^{T} A \mathbf{x}-\lambda\left(\mathbf{x}^{T} I \mathbf{x}\right)=\mathbf{x}^{T}(A-\lambda I) \mathbf{x}
$$

It follows that the first order conditions is a linear system, and it can be written as

$$
2(A-\lambda I) \mathbf{x}=\mathbf{0} \quad \Rightarrow \quad(A-\lambda I) \mathbf{x}=\mathbf{0}
$$

Therefore, we have that $(\mathbf{x} ; \lambda)$ is a solution of the FOC's if and only if \mathbf{x} is an eigenvector of A with eigenvalue λ. If $\lambda=0$, then FOC's implies that $\mathbf{x}=\mathbf{0}$ since $\lambda=0$ is not an eigenvalue; the eigenvalues of A are $\lambda=1,3,5,-5$ from Question $1(\mathrm{c})$. We therefore get the candidate point $(0,0,0,0 ; 0)$ with $f=0$ from the non-binding case. In the binding case $g(\mathbf{x})=1$, any solution of the FOC's is an eigenvector with eigenvalue $\lambda \neq 0$. For each possible eigenvalue $\lambda>0$, there are two points that satisfy the constraint: In fact, $E_{\lambda}=\operatorname{span}(\mathbf{v})$ since all eigenvalues have multiplicty one, and $\mathbf{x}=c \mathbf{v}$ gives

$$
g(\mathbf{x})=\mathbf{x}^{T} \mathbf{x}=(c \mathbf{v})^{T}(c \mathbf{v})=c^{2} \mathbf{v}^{T} \mathbf{v}=1 \quad \Rightarrow \quad c= \pm \sqrt{\frac{1}{\mathbf{v}^{T} \mathbf{v}}}
$$

which gives two vectors since $\mathbf{v}^{T} \mathbf{v}>0$. For each of these two vectors in E_{λ} that satisfy the constraint, we have

$$
f(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}=\mathbf{x}^{T} \lambda \mathbf{x}=\lambda \mathbf{x}^{T} I \mathbf{x}=\lambda \cdot 1=\lambda
$$

The best candidate for maximum is therefore one of the two eigenvectors with maximal eigenvalue $\lambda=5$ that satisfies the constraint. It is clear that the constraint give a bounded set of admissible points, so the problem has a maximum by the EVT (extreme value theorem). Finally, the NDCQ is satisfied for all admissible points. We can therefore conclude that $f_{\max }^{*}=5$ is the maximum value of the Kuhn-Tucker problem.

