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Question 1.

(a)

We compute the leading principal minors of A, and find that D; = 2, Dy = 4 — 1 = 3,
D3 = 3D2 = 9, and

Dy=2-2-(—9—-16)—1-1-(—=9—16) = (4 — 1)(—25) = —75
Since D4 < 0, we conclude that A is indefinite. Alternatively, it is possible to see this from
the fact A has both positive and negative principal minors of order one, since A; = 2,2,3, —3.

The eigenvectors of A with eigenvalue A = —5 are the solutions of (A + 5I) - x = 0. We use
Gaussian elimination to find these solutions:

7 1 0 00 1 70 0]0 1 7 0 0|0

1 70 0]0 N 7 1 0 00 N 0 —48 0 010

0 08 4]0 0 08 410 0 0 8 4|0

0 04 210 004 20 0 0 0 00
We see that there is one free variable, so dim F_5 = 1. Backward substitution gives 8z+4w = 0,
or z = —w/2, that —48y = 0, or y = 0, and that z+ 7y = 0, or x = —7y = 0. The eigenvectors

are therefore given by

0 0 0
0 0 .

X = —w)2 =w- _1/2 =w-v withv= —1/2
w 1 1

The eigenvectors can therefore be written as E_5 = span(v).
By definition, dim Null(A — rI) > 1 if and only if det(A — rI) = 0, or if r is an eigenvalue for
A. We compute the eigenvalues:

2—r 1 0 0
det(A—rn=| o 2070 Y =0

0 0 4 -3-r
To simplify the computation, we first compute the 2-minor in the lower right corner, which is
(3—7r)(=3—-7r)—16 =72 -9 — 16 = r? — 25. We then compute the full determinant using
cofactor expansion along the first row:
2-r)2—7)-(r*—=25)—1-1-(r*=25)=((2—7)>—1)-(r* —=25) =0

We end up with the equation (r? — 4r + 3)(r? — 25) = 0, with solutions r = 1, 7 =3, r =5
and » = —5. Hence A has eigenvalues r = 1, 3,5, —5.

Question 2.

(a)

The differential equation 4y” — 4y’ — 3y = 9¢ is second order linear and we can solve it using
superposition. To find the homogeneous solution ¥, we consider the homogeneous differential
equation 41" — 4y’ — 3y = 0, which has characteristic equation 472 — 4r — 3 = 0, with two
distinct solutions r = 3/2 and r = —1/2. Therefore, we have

yp = Cl €3t/2 4 02 C_t/2

To find the particular solution y,, we consider the differential equation 4y” — 4y’ — 3y = 9¢ and
use the method of undetermined coefficients. We start with f(¢) = 9¢, and compute f' =9
and f” = 0. Based on this, we guess the solution y = At + B, which gives 3y = A and y” = 0.
When we substitute this into the differential equation, we get

—4A —3(At+ B) =9t
Comparing coefficients, we get —34A =9 and —44A —3B =0, or A= -3 and B =4, and

yp = —3t+4
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The general solution of the differential equation is therefore
y=yp+yp=Cre"?+Cre " —3t+4
The differential equation 4ty’ + 4y = 1 can be written 4y — 1 + 4ty’ = 0, and we try to solve
it as an exact differential equation, and look for a function h(t,y) such that
hy = 4y — 1, h;:4t

We see that h = 4ty — t is one solution, so the differential equation is exact and the general
solutions is given by

C+t
Aty —t=C = y:T;L

The system of differential equations can be written in the form y’ = A -y, where
. 1 2 o Y1
=0 3) v ()

We find the eigenvalues and eigenvectors of A: The eigenvalues of A are the diagonal entries
A1 = 1 and Ay = 5, since A is upper triangular. Since all eigenvalues have multiplicity one,
the eigenspaces are one-dimensinal and can be written E; = span(vy) and E5 = span(vy). In

fact, we may choose
(1 (1
Vi = 0/’ Vo = 2

0 2 —4 2
A—)\1[<0 4), A—)\21<0 0)

Since A is diagonalizable, with enough eigenvalues and eigenvectors, we have that the general
solution is

1 1 Crel + Cyed
y =Civq Mt + Cyvo eret = Gi (0> el + Co <2> e’ = < 1 262'2 edt

since we have that

Alternatively, we could solve the second equation y, = 5y2 as a linear differential equation,
which gives yo = C3 €%, and then substitute this in the first differential equation, and get

Y=y + 2y =y +2C0e =y —y =20y€”

We can solve this as a linear differential equation, and get y; = y{l +yf =Crel + %Cg edt.

Question 3.

(a)

The first order partial derivatives of f(z,y,2) = 322 +4? + azy — y + 22* + 82 + 12 and the
FOC’s are given by

fi=6x+ay=0, fi=2y+ax—1=0, f/=8"+8=0

When a = 3, the last FOC gives 823 = —8, or z = —1, and the first FOC gives y = —2x.
Substituting this in the middle FOC, we get —4z + 3z — 1 = 0, or x = —1, and this gives
y = —2x = 2. There is a unique stationary point when a = 3, given by (z,y,2) = (—1,2,—1).
The Hessian matrix of f is given by

6 a 0
H(f)=|a 2 0
0 0 2422

For all z,y, z, we have that D; = 6 > 0, that Dy = 12 — a2, and that D3 = 2422(12 — a?). We

know that f is convex if and only if H(f) is positive semi-definite for all z, y, z. Soif f is convex,

then Dy = 12 — a? > 0. Conversely, if 12 — a? > 0, then Dy, Dy, D3 > 0, and all principal

minors A = 6,2,2422 > 0, Ag = 12 —a?, 14422 4822 > 0, and A3 = 2422(12 — a?) > 0, which

means that f is convex. It follows that f is convex if and only if a® < 12, or —/12 < a < V/12.
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(¢)

When a = 3, it follows from (b) that f is convex, and the stationary point (—1,2,—1) found
in (a) is a global minimum point, with minimum value f*(3) = f(—1,2,—1) = 5. By the
envelope theorem, we have that
) ) @), 2 (@)
Since f! = xy, it follows that df*(a)/da = x*(a) - y*(a), and df*(a)/da = (1) -2 = =2 at
a = 3. This means that the minimum value is
df*(a)
*(a) =~ f*(3) + Aa -
F(a) % £1(3) + Ao LY
when a is close to 3. Note that f is convex when a is close to 3 by (b), and there are stationary
points of f such that a global minimum exists.

=5+ (a—3)(=2)=11—2a

Question 4.

(a)

The Lagrangian is £ = 222 + 22y + 2y% + 322 + 82w — 3w? — A\(2? + % + 22 + w?). The first
order conditions (FOC) are

Ll =4x+2y —\22)=0
L, =2z +4y —\2y) =0
L, =6z+8w— A

22) =0
L, =8z—6w—\ =0

(
(2w)

and the constraint (C) is given by 2% +1?+ 22 +w? =1. The Lagrange conditions are
FOC+C.

When A\ = —5, the first order conditions become

L =4r+2y+ 10z =0
E; =2x+4y+ 10y =0
L, =62+ 8w+ 10z =0
L, =82—6w+10w=0
The two first FOC’s give 14x + 2y = 0, or y = —7x, and 2z + 14y = 2x + 14(—7z) = 0, or
—96x = 0. This gives x = y = 0. The last two FOC’s give 16z + 8w = 0, or w = —2z, and
8z + 4w = 8z + 4(—2z) = 0, or 0z = 0. This gives z = —w/2 and w free, and the solutions
of the FOC’s are therefore given by (z,y, z,w) = (0,0, —w/2,w) with w free. Alternatively,
we could find these solutions using Gaussian elimnation, as the FOC’s are linear. Finally, the
constraint gives (—w/2)%+w? = 1, or 5w?/4 = 1. This implies that w? = 4/5, or w = £2//5.
The points with A = —5 that satisfy the Lagrange conditions are therefore
(z,y,z,w; A) = (0,0, —1/\/5, 2/\/5; -5), (0,0, 1/\[, —2/\/5; —5)
We apply the SOC (second order condition) to the candidate points (0,0, F — 1/v/5, £2/v/5)
with A = —5: By the SOC, these points are solutions of the Lagrange problem if the function
h(z,y,z,w) = L(x,y, 2z, w; —5)
=222 + 2zy 4 2y% + 32 + 82w — 3w 4 5(z* + % + 2° + w?)
= Tx? 4 22y + Ty + 82% + 82w + 2uw?

is convex. The Hessian matrix of A is

14 2 0 O
2 14 0 0
H(n) = 0 0 16 8
0 0 8 4

We compute its leading principal minors, which are D1 = 14 > 0, Dy = 196 — 4 = 192 > 0,
D3 =16D5 > 0 and

Dy=14-14-(16-4—-8%) —2-2-(16-4—-8%) =0
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Alternatively, we could see that Ds = 0 from the fact that the last row in H(h) is 1/2 times the
third row. Since Dy, D2, D3 > 0 and D4 = 0, it follows that rk H(h) = 3 and H (h) is positive
semi-definite by the RRC (reduced rank condition). Hence h is convex, and by the SOC, the
candidates found in (b) solves the Lagrange problem, with f*. = f(0,0,—1/v/5,2/y/5) = —5.

Question 5.

The objective function is the quadratic form f(x) = x’ Ax with symmetric matrix A, where A is
the matrix from Question 1, and the constraint can be written as g(z,y,z,w) < 1, where g is the
quadratic form g(x) = x!Ix with symmetric matrix I, the identity matrix. This means that the
Lagrangian of the Kuhn-Tucker problem is the quadratic form given by

L(z,y, z,w; ) = xT Ax — \(xTIx) = xT (A — X\)x
It follows that the first order conditions is a linear system, and it can be written as
20A-X)x=0 = (A-X)x=0

Therefore, we have that (x; ) is a solution of the FOC’s if and only if x is an eigenvector of A with
eigenvalue A. If A = 0, then FOC’s implies that x = 0 since A = 0 is not an eigenvalue; the eigenvalues
of A are A = 1,3,5,—5 from Question 1(c). We therefore get the candidate point (0,0,0,0;0) with
f = 0 from the non-binding case. In the binding case g(x) = 1, any solution of the FOC’s is an
eigenvector with eigenvalue A % 0. For each possible eigenvalue A > 0, there are two points that
satisfy the constraint: In fact, E) = span(v) since all eigenvalues have multiplicty one, and x = ¢v

gives
1
T T 2T
== = V)= viv=1 = = 4 _—
g(x)=x"x=(cv)' (ev) =c c \| =

which gives two vectors since vI'v > 0. For each of these two vectors in Fy that satisfy the constraint,
we have
fx)=xTAx=xTdx = xTTx=X-1= )\

The best candidate for maximum is therefore one of the two eigenvectors with maximal eigenvalue
A = 5 that satisfies the constraint. It is clear that the constraint give a bounded set of admissible
points, so the problem has a maximum by the EVT (extreme value theorem). Finally, the NDCQ is
satisfied for all admissible points. We can therefore conclude that .. = 5 is the maximum value of
the Kuhn-Tucker problem.



