
Solutions Final exam in GRA 6035 Mathematics
Date June 20th, 2018 at 0900 - 1200

Question 1.

(a) The matrix A has determinant

det(A) =

∣∣∣∣∣∣
1 1 1
1 t t2

1 −t t2

∣∣∣∣∣∣ = 1(t3 + t3)− 1(t2 − t2) + 1(−t− t) = 2t3 − 2t = 2t(t− 1)(t+ 1)

(b) Since det(A) = 2t(t − 1)(t + 1), we have that det(A) = 0 for t = 0 and t = ±1. Therefore,
rk(A) = 3 for t 6= 0,±1. Moreover, none of the values t = 0, t = 1 or t = −1 make both the
minors ∣∣∣∣1 1

1 t

∣∣∣∣ = t− 1,

∣∣∣∣1 1
1 −t

∣∣∣∣ = −t− 1

vanish, so rk(A) = 2 in these three cases. This gives

rk(A) =

{
2, t = 0, 1,−1

3, t 6= 0, 1,−1

(c) If t 6= 0, 1,−1, then det(A) 6= 0, and x = A−1b is a solution of the linear system. If t = 0, 1,−1,
then t3 = t, and therefore (x, y, z) = (0, 1, 0) is one of the solutions of the linear system. We
could alternatively use Gaussian elimination in all three cases to solve the linear system (which
would have infinitely many solutions). Therefore, the linear system is consistent for all values
of t.

Question 2.

(a) The differential equation y′′ − 29y′ + 100y = 100t − 29 is second order linear and we can
solve it using the superposition principle, with y = yh + yp. Since the characteristic equation
r2 − 29r + 100 = 0 has solutions r = 4 and r = 25, the homogeneous solution is given by
yh = C1e

4t +C2e
25t. For the particular solution, we guess that there is a solution of the form

y = At+B. This gives y′ = A and y′′ = 0, and therefore

0− 29 ·A+ 100 · (At+B) = 100t− 29

This gives 100A = 100, or −29A + 100B = −29. The solution is A = 1 and B = 0, and
therefore yp = t, and the general solution is

y = yh + yp = C1e
4t + C2e

25t + t

(b) The differential equation y′ + 2ty = 4e−t
2

is linear, with a(t) = 2t and b(t) = 4e−t
2
. The

integrating factor is et
2

since
∫

2t dt = t2 + C. Hence, the differential equation can be re-
written as

(y · et2)′ = 4 ⇒ yet
2

= 4t+ C

We solve this exaction for y, and obtain

y = (4t+ C)e−t
2

(c) The differential equation ty′ = y ln(y) is separable, since it can be written

y′ =
y ln y

t
⇒ 1

y ln y
y′ =

1

t

Integrating on both sides gives ∫
1

y ln y
dy =

∫
1

t
dt

Using the substitution u = ln y and du = (1/y)dy, we obtain∫
1

u
du = ln |u|+ C = ln | ln y|+ C
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on the left-hand side, and therefore

ln | ln y| = ln |t|+ C ⇒ | ln y| = eC |t|
This can be written ln y = Kt with K = ±eC , and the general solution is given by

y = eKt

Question 3.

(a) The stationary points of u are given by

u′x = 4x− 2y − 4z = 0, u′y = −2x+ 2y = 0, −4x+ 8z = 0

This gives x = 2z from the last equation, y = x = 2z from the second equation, and therefore
4(2z)− 2(2z)− 4z = 0 from the first equation, which gives 0 = 0. This implies that z is free,
and (x, y, z) = (2z, 2z, z) are therefore the stationary points of u.

(b) The Hessian of u is given by

H(u) =

 4 −2 −4
−2 2 0
−4 0 8


and D1 = 4, D2 = 8 − 4 = 4 and D3 = −4(8) + 8(4) = 0 when the use cofactor expansion
along the last column to compute D3. Since H(u) has rank two, it follows from the reduced
rank condition that it is positive semidefinite, and therefore u is convex, and the stationary
points are global minimum points. The global minimum value is u(0, 0, 0) = −2 since (0, 0, 0)
is one of the stationary points found in (a), with z = 0, and all the others, with z 6= 0, would
give the same value of u.

(c) The outer function f(u) = eu + e−u has derivative

f ′(u) = eu + e−u · (−1) = eu − 1

eu
=
e2u − 1

eu
=

(eu − 1)(eu + 1)

eu

Since eu, eu + 1 > 0 for all u, and f ′(u) = 0 for eu = 1, or u = 0, we see that f(u) decreasing
for u ≤ 0 and increasing for u ≥ 0. When u = u(x, y, z), we have seen in (b) that the possible
values for u are Vu = [−2,∞) since u = −2 is the minimum value of u. Hence u = 0 gives the
minimum value fmin = e0 + e−0 = 2 of f . There is no maximum value of f since f(u) → ∞
when u→∞.
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f(u) = eu + e−u

Question 4.

(a) The Lagrangian is L = xy(x − y) − λ(x2 + y2 + (x − y)2) = x2y − xy2 − λ(2x2 − 2xy + 2y2)
since the Kuhn-Tucker problem is in standard form. The first order conditions (FOC) are

L′x = 2xy − y2 − λ(4x− 2y) = 0

L′y = x2 − 2xy − λ(−2x+ 4y) = 0
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the constraint (C) is given by 2x2 − 2xy + 2y2 ≤ 96, and the complentary slackness conditions
(CSC) are given by

λ ≥ 0 and λ(2x2 − 2xy + 2y2 − 96) = 0

The Kuhn-Tucker conditions are FOC+C+CSC.
(b) We look at the cases when (i) 2x2 − 2xy + 2y2 < 96 and (ii) 2x2 − 2xy + 2y2 = 96 separately.

In each case, we find all points (x, y;λ) with x, y 6= 0 that satisfies FOC+C+CSC. We start
with case (i): With λ = 0, we get 2xy − y2 = x2 − 2xy = 0, or y(2x − y) = x(x − 2y) = 0.
With x, y 6= 0, this gives 2x − y = x − 2y = 0, and this implies that x = y = 0. Hence there
are no candidates with x, y 6= 0 in this case. We consider case (ii), and write the FOCs as

2xy − y2 − λ(4x− 2y) = y(2x− y)− 2λ(2x− y) = (y − 2λ)(2x− y) = 0

x2 − 2xy − λ(−2x+ 4y) = x(x− 2y)− 2λ(−x+ 2y) = (x+ 2λ)(x− 2y) = 0

There are four sub-cases to consider:
If y = 2λ and x = −2λ, then the constrain gives 2x2 − 2xy + 2y2 = 24λ2 = 96. This gives
λ2 = 4 and λ = 2 (since λ ≥ 0). We get the candidate point (x, y;λ) = (−4, 4; 2) with f = 128.
If y = 2λ and x − 2y = 0, then x = 4λ. The constrain gives 2x2 − 2xy + 2y2 = 24λ2 = 96.
This gives λ2 = 4 and λ = 2 (since λ ≥ 0). We get the candidate point (x, y;λ) = (8, 4; 2)
with f = 128.
If x = −2λ and 2x− y = 0, then y = −4λ. The constrain gives 2x2 − 2xy + 2y2 = 24λ2 = 96.
This gives λ2 = 4 and λ = 2 (since λ ≥ 0). We get the candidate point (x, y;λ) = (−4,−8; 2)
with f = 128.
Finally, if 2x− y = −x+ 2y = 0, we get x = y = 0. There are therefore three candidate points
(x, y;λ) with x, y 6= 0 that satisfy FOC+ C+CSC, given by

(x, y;λ) = (−4, 4; 2), (8, 4; 2), (−4,−8; 2)

shown in the figure below.
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x2 + y2 + (x− y)2 ≤ 96

(c) The set of points (x, y) such that x2+y2+(x−y)2 ≤ 96 is bounded. In fact, x2, y2, (x−y)2 ≥ 0
and therefore x2, y2, (x − y)2 ≤ 96, which means that −

√
96 ≤ x, y ≤

√
96. We can also see

that the set if bounded by noticing that it consist of an ellipse and the inside of an ellipse. By
the EVT, the Kuhn-Tucker problem therefore has a maximum. The possible maximum points
are the candidate points with x, y 6= 0 found in (b), candidate points with x = 0 or y = 0 that
satisfy FOC+C+CSC, and admissible points where NDCQ fails. The candidate points found
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in (b) have f = 128. Therefore, possible candidate points with x = 0 or y = 0, where f = 0,
cannot be maximum points. The NDCQ in the case x2 + y2 + (x− y)2 = 96 is given by

rk
(
2x+ 2(x− y) 2y − 2(x− y)

)
= 1

and it fails if 4x − 2y = −2x + 4y = 0, which gives x = y = 0. Since this point does not
satisfy x2 + y2 + (x − y)2 = 96, NDCQ holds for all points on the ellipse. Since there is
no NDCQ condition in case x2 + y2 + (x − y)2 < 96, there are no admissible points where
NDCQ fails inside the ellipse either. We conclude that f = 128 is the maximum value, and
that (x, y) = (−4, 4), (−4,−8), (8, 4) are the maximum points. The SOC gives no conclusion
in this case.

Question 5.

We solve the differential equation y′ = ry(1− y/K) by separation of variables, given by

Ky′ = ry(K − y) ⇒ K

y(K − y)
y′ = r ⇒

∫
K

y(K − y)
dy =

∫
r dt

The integral on the left-hand side can be computed by decomposing the fraction as

K

y(K − y)
=
A

y
+

B

K − y
where multiplication by y(K − y) gives K = A(K − y) + By = (B − A)y + AK. This gives A = 1
and B = 1, and therefore∫

1

y
+

1

K − y
dy = ln |y| − ln |K − y|+ C1 ⇒ ln

∣∣∣∣ y

K − y

∣∣∣∣ = rt+ C2

Using the exponential function on both sides, we get
y

K − y
= ±erteC2 = Cert ⇒ y = (K − y)Cert

with C = ±eC2 . Solving for y, we get

y(1 + Cert) = CKert ⇒ y =
KCert

1 + Cert
= K

Cert

1 + Cert

The differential equation has equilibrium states y = 0 and y = K. Since the equation can be written
as y′ = F (y) = ry − ry2/K, we have that

F ′ = r − 2ry/K ⇒

{
F ′(0) = r > 0

F ′(K) = −r < 0

Therefore, y = 0 in unstable and y = K is stable by the Stability Theorem. We show the graph of
y = y(t) below for typical values of r > 0 and K > 0.

t
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y = K is stable

y = 0 is unstable

y = y(t)
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