Solutions Final exam in GRA 6035 Mathematics
Date January 6th, 2017 at 1200 - 1500

QUESTION 1.
(a) The determinant of A is
-1 1 -1
det(A)=|1-1 0 0|=1(1-1)=0
0 -1 1
This means that rk(A) < 3, and since at least one of the 2-minors are non-zero, for instance

-1 1
1ol T 1#0

it follows that rk(A) = 2.
(b) The linear system Ax = 0 has one free variables since A has rank two, and we compute the
solutions using Gaussian elimination:
-1 1 -1 -1 1 -1 -1 1 -1
-1 0 0 — 0o -1 1 — 0o -1 1
0 -1 1 0o -1 1 0 0 0

This means that z is free, y = z and x = y — z = 0, and the solutions to the linear system can
be written in the form

x 0 0 0
x=|y|l=|z]l=z11]=2z-vy, withvi=]1
z z 1 1

That is, the solutions are the vectors in span(vy).
(c) To check if A is diagonalizable, we compute the eigenvalues of A, given by the characteristic
equation det(A — A\I) = 0:
—1-X 1 -1
-1 -2 0 |=0
0 -1 1-A
This gives the equation
(=1 =X)(=AX1=X)+11-X=1)=0
which gives, after multiplication, that
AN 1) A= AN -1+1)=-X=0
The eigenvalues are therefore A\ = 0 (with multiplicity three). The linear system that gives
the eigenvectors for A = 0, is given by
(A-0-I)x=0
and since A has rank two, Ax = 0 has just one free variable. Since the multiplicity of A =0
is three, this means that A is not diagonalizable.

QUESTION 2.

(a) The differential equation y” — 3y’ — 10y = 20 is second order linear, with solution y = y;, + y,.
The homogeneous equation y” — 3y’ — 10y = 0 has characteristic equation r? — 3r — 10 = 0,
with solutions r = 5 and r = —2. Therefore, the general solution is

yp=C1 -4+ Cy-e

Since the right hand side f(¢) = 20 is a constant, we guess a constant solution y, = A, which
gives ¥ =y’ = 0 and —10A = 20, with solution A = —2. Therefore, the general solution is

yzyh+yp=C'1-eSt+C’2-e_2t—2
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(b)

The differential equation 3’ + In(t) = yln(¢) is linear and separable since it can be written
Y —In(t)y = —In(t) or as ¥y = (y — 1)Int. We solve it as a separable differential equation
y' = (y — 1) In(t), which gives

1, 1
= Y n(t) = /y— . dy / n(t) dt

Using integration by parts with ' = 1 and v = Int to compute the last integral, we get
Injy—1|=tht—t+C = |y—1]=¢it. ¢
This implies that y — 1 = Ke!™*~t with K = +e°, or that
y = Ketmt=1 11

If we would solve it as a linear differential equation ¢y’ —In(t)y = — In(t) instead, the integrating
factor u would be given by

/—ln(t)dt =—tlnt+t+C = wu=e N
which gives
ye—tlnt—l—t — /_ln(t)e—tlnt+tdt — /eudu — ol +C = e—tlnt+t +C

with the substitution v = —tInt + ¢, du = — In(¢)d¢. This would give
y=1+Cellnt-t

We try to solve the differential equation 6t(y? —t2)? = 6y(y? —t?)% - ¢/ as an exact differential
equation. We write it in the form 6t(y? —t2)? — 6y(y*> —t2)? -/ = 0, and try to find a function
h = h(y,t) such that
hi = 6t(y> — %)%, hi, = —6y(y* — *)?
From the first equation, it follows that h = —(y? — t?)3 + C(y), since the derivative (—u3); =
—3u? - u} with u = y? — t? and u}, = —2t. We check the second equation, and compute
hy, = —3u? - Uy, = —3(y* — %)% - 2y + C'(v)

Therefore h = —(y? —2)3 +C(y) is a solution to both equations if C’(y) = 0, and the simplest
solution to this is C'(y) = 0. We therefore have that

hy.t)=-("-t*) =K = (-1 =-K
The initial condition y(0) =1 gives 1 = —K, or K = —1. Hence the solution is
y2—t2=\3/i=1 = y=vt2+1
Notice that that we can exclude the possibility y = —v/#2 + 1 as this would give y(0) = —1.

QUESTION 3.

To find out if f(z,y,2) = —3 — 222 + 22y — 222 — 2y? + 4yz — 222 is convex, we compute its
first order partial derivatives

fo=—4r+2y—22, f,=20—4y+4dz, f,=-2u0+4y—4z

z

and its Hessian matrix

—4 2 -2
Hfy=|2 -4 4
—2 4 —4

The leading principal minors are D1 = —4, Dy = 12 and D3 = —4 - 12 — 4(—12) — 2(0) = 0.
We have used cofactor expansion along the last row to compute D3. We see that the Hessian
H(f) may be negative semidefinite, and we must check if all principal minors A; > 0 to verify
this. We compute that Ay = —4, -4, —4 < 0, Ay = 12,12,0 > 0 and Az = 0. Hence H(f) is
negative semidefinite, and f is concave. Since D1 < 0, H(f) is not positive semidefinite, so f
is not convex.
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(b)

The stationary points of f are the solutions of the first order conditions, given by
fi=—4x +2y — 22 =0, f;:2x—4y—|—4z:0, fi=-20+4y—42=0

This is a linear system, and we solve it using Gassian elimination:

-4 2 =2 -2 1 -1 -2 1 -1
2 -4 4 — 0o -3 3 — 0 -3 3
-2 4 -4 0o 3 =3 0 0 0

We have divided the last row by 2, to simplify computations. We see that z is a free variable,
that y = z and that —2x = —y + 2z = 0, which gives z = 0. Therefore, there are infinitely
many stationary points, given by (z,y,z) = (0,z,2). Since f is concave, all these stationary
points are maxima, with maximum value f(0, z,z) = —3.

Since g(w) = 6/w has derivative ¢'(w) = —6/w? and w = f(z,y,2) < —3 is negative (since
—3 is the maximal value of f), it follows that g is a decreasing function of w. Therefore, the
maximum of f gives a minimum of g. It follows that the minimum of g is obtained at the
points (0, z, z) with minimum value ¢(0, 2z, z) = 6/f(0,z,z) = 6/(—3) = —2. The function g
has no maximum value, as this would correspond to minimum values of f, which does not
exist. For example, when y = z = 0, we have that

6 6
0,0) = = —0 wh —
9(x,0,0) F@.00) - —3-a2 when z — oo
Hence g(z,y, z) < 0 for all z,y, z, and g takes values arbitrary close to 0, and g does not have
a maximal value.

QUESTION 4.

The standard form of the Kuhn-Tucker problem is
max —3 — 222 + 2zy — 2xz — 2y% + dyz — 222 subject to —x —y + 2 < —2
The Lagrangian is £ = —3 — 222 + 2zy — 222 — 2y + 4yz — 222 — A(—x — y + 2). The first
order conditions (FOC) are
L,=—4x+2y—22+1=0
L, =2r—4y+4z+A1=0
L,=—2r+4y—4z-A=0
the constraint (C) is given by x + y — z > 2, and the complementary slackness conditions are
given by A >0 and AN(z +y—2—2) =0.
To find candidate points for maximum, we solve the Kuhn-Tucker conditions. In the case
x4+ 1y — 2z > 2, we have that A = 0, and this gives the linear system

—4dx +2y—22=0
2 — 4y + 4z =0
—2r+4+4y—4z=0
with solution (z,y,2) = (0, z,2) with z as a free variable from Question 3. At these points,

x+y—2z =0+4+2—2 =0, so the constraint z+y —z > 2 does not hold. There are no candidate
points in this case. In the case when x + y — 2 = 2, we get the linear system

r+y—z2=2
—dr+2y—2z4+A=0
20 —4dy +4z4+ A =0
—2r+4y—4z—A=0

We use Gaussian elimination to solve this system, and get

1 1 -1 012 1 1 -1 0] 2 11 -1 0]2
4 2 -2 110 0 6 —6 1] 8 06 —6 1|8
9 —4 4 10| 7 lo =6 6 1|-4| 7 loo o0 24
9 4 -4 —1]0 00 0 0|0 00 0 0[]0



This shows that there are infinitely many solutions to the Kuhn-Tucker conditions, with z
free. Moreover, we see that A = 2, that 6y = 6z — 2 + 8 = 6z + 6, which gives y = z 4+ 1, and
that t = —y+2+2=—(2+4+1) + 2+ 2 = 1. In other words, the solutions are

(w,y,2;0) = (1,2 4+ 1,2;2)

for any value of z. We choose one of the these points, for example the point (1,1,0;2) with
z =0, and use the SOC: The Lagrangian

L(x,y,72) = =3 — 22° + 2zy — 232 — 2y° + dyz — 22° —2(—x —y + 2)

has the same Hessian matrix as f in Question 3a). It follows that £ is a concave function, and

therefore (1,1,0) is a maximum point with maximum value f(1,1,0) = —5. Any of the other
solutions (x,y, 2) = (1, z+ 1, z) of the Kuhn-Tucker conditions is also a maximum point with
f(l,z41,z) = —5, since it gives the same Lagrangian.

(c) We consider the Kuhn-Tucker problem max f(x,y, z) subject to ax+y—z > 2, with constraint
—ax —y + z < —2 in standard form. We know by b) that for a = 1, it has maximum value
f*(1) = =5 obtained at the point (z*(1),y*(1),2*(1); A*(1)) = (1,2 + 1, 2;2). The Lagrangian
of the Kuhn-Tucker problem with parameter a is

L=—3—-22% 422y — 2z — 2y + dyz — 22° — N(—az — y + 2)
with 0L/0a = Ax. The relevant Envelope Theorem is that

df;ia) = L1 (z*(a),y"(a), 2" (a); *(a)) = \*(a) - 2*(a)

for values of the parameter a such that a maximum is obtained at (z*(a),y*(a), z*(a); \*(a)),
a solution of the Kuhn-Tucker conditions. This is the case for all values of a close to 1, and it
implies that

FF112) 2 fF 1) +2-Aa=—5+2-(0.12) = =5 + 0.24 = —4.76

by the Envelope Theorem since A*(1) - *(1) = 2-1 = 2. In fact, for all @ > —1, we find the
solutions of the Kuhn-Tucker conditions by replacing the linear system in b) with the linear

system
a 1 -1 0 |2 -2 4 -4 -110
-4 2 =2 1|0 -4 2 =2 110
2 —4 4 1]0] 7 |2 -4 4 1|0
-2 4 -4 -1|0 a 1 -1 0|2
We have swapped the first and last row, and this gives the echelon form
-2 4 —4 -1 |0 -2 4 -4 -1 10
. 0 —6 6 3 0 N 0o -1 1 1/2 |0
0 0 0 0 0 0 0 0 14a|4
0 1422 —-1—-2a —a/2|2 0 0 0 0 0

We see that there is an infinite number of solutions (z*(a), y*(a), 2*(a); A*(a)) with A*(a) > 0,
and with z as a free variable. By the SOC, these solutions are maxima since the Lagrangian

4
ﬁ:—3—2x2+2xy—2xz—2y2+4y2—222—ﬁ(—aaz—y—i—z)
a

is a concave function (it has the same Hessian as the Lagrangian in b).

QUESTION 5.

To compute the eigenvalues of A, we solve the characteristic equation given by

—as — A o 0
A= X|=| —a3 - ar | =0
0 —Q3 Q9 — A



The determinant on the right hand side can be computed using cofactor expansion along the first
column:

|[A—= M| =(—az — A)(=Aag — ) + aras) + ag(ag(ag — N))
=—(\+ ag)()\2 — ag\ + aja3) + apaeas — ajag
=X+ (a2 —20a3)A = —A(\? — (a3 — 20103))
Therefore, the characteristic equation gives that A = 0 or that A\? = a2 — 2a1a3. Let us write
A =03 —2003

If A >0, then A = 0 and A\ = ++/A are the three distinct eigenvalues of A. In this case A is
diagonalizable. If A < 0, then A = 0 is the only eigenvalue of A (with multiplicity one) and A is not
diagonalizable. If A = 0, then A = 0 is the only eigenvalue of A, with multiplicity three, and A is
only diagonalizable if A = 0, that is, if @1 = aa = a3 = 0. We conclude that A is diagonalizable if
and only if a% —2a1a3 > 0o0r a1 = ag = ag = 0.
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