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Question 1.

(a) We compute the partial derivatives f ′x = 2xeu, f ′y = −eu + 1 and f ′z = 2z, where we write

u = x2 − y. The stationary points are given by the equations

2xeu = 0, 1− eu = 0, 2z = 0

The first equation gives x = 0 and the third gives z = 0. From the second equation, we get
that eu = 1, or that u = x2− y = 0, and this gives y = 0 (since x = 0). The stationary points
are therefore given by (x,y, z) = (0,0,0).

(b) We compute the second order partial derivatives of f and form the Hessian matrix

f ′′ =


(2 + 4x2)eu −2xeu 0

−2xeu eu 0

0 0 2


We see that the matrix has leading principal minors D1 = (2 + 4x2)eu > 0, D2 = 2e2u > 0
and D3 = 4e2u > 0. Since all leading principal minors are positive, f is convex but not
concave.

Question 2.

(a) To compute the determinant of A, we develop it along the third column:

det(A) =

∣∣∣∣∣∣∣∣∣
1 3s+ 1 −2

3 7s− 2 0

2 7s −4

∣∣∣∣∣∣∣∣∣ = −2(21s− 2(7s− 2))− 4(1(7s− 2)− 3(3s+ 1))

This gives

det(A) = −2(7s+ 4)− 4(−2s− 5) = −6s + 12 = −6(s− 2)

This means that A is has rank 3 if s 6= 2, since det(A) 6= 0. For s = 2, we see that A has rank
2 since det(A) = 0 and there is a minor of order two that is non-zero:∣∣∣∣∣∣3 0

2 −4

∣∣∣∣∣∣ = −12 6= 0
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Therefore it follows that

rk(A) =

{
2 s = 2

3 s 6= 2

(b) To check if v is an eigenvector of A, we compute

Av =


1 3s+ 1 −2

3 7s− 2 0

2 7s −4

 ·

−8

2

3

 =


6s− 12

14s− 28

14s− 28


We know that v is an eigenvector with eigenvalue λ if and only if

Av = λv ⇔


6s− 12

14s− 28

14s− 28

 = λ ·


−8

2

3

 =


−8λ

2λ

3λ


From the last two equations, we see that 2λ = 3λ, which means that λ = 0. When we
substitute λ = 0 in all three equations, we see that s = 2 is a solution. This means that v is
an eigenvector if and only if s = 2, and the corresponding eigenvalues is λ = 0.

(c) We substitute s = 2 in A, and find that

A =


1 7 −2

3 12 0

2 14 −4


The we write down the characteristic equation A− λI = 0, which gives∣∣∣∣∣∣∣∣∣

1− λ 7 −2

3 12− λ 0

2 14 −4− λ

∣∣∣∣∣∣∣∣∣ = −3(7(−4− λ) + 28) + (12− λ)((1− λ)(−4− λ) + 4) = 0

After we simplify this equation, we get

−3(−7λ) + (12− λ)(λ2 + 3λ) = λ(−λ2 + 9λ+ 57) = 0

The eigenvalues of A for s = 2 are therefore λ = 0 and λ = −9±
√
309

−2 .

Question 3.

(a) The homogeneous equation y′′ + 3y′ − 10y = 0 has characteristic equation r2 + 3r − 10 = 0,
and therefore roots r = 2,−5. Hence the homogeneous solution is yh(t) = C1e

2t +C2e
−5t. To

find a particular solution of y′′ + 3y′ − 10y = 2t, we try y = At + B. This gives y′ = A and
y′′ = 0, and substitution in the equation gives 3A − 10(At + B) = 2t. Hence A = −1/5 and
B = −3/50 is a solution, and yp(t) = −1

5 t −
3
50 is a particular solution. This gives general

solution

y(t) = C1e
2t + C2e

−5t − 1

5
t− 3

50

(b) We re-write the differential equation as

3y2y′ = 2tet
2 − 2t

This differential equation is separable, and we integrate on both sides to solve it:∫
3y2 dy =

∫
(2tet

2 − 2t) dt ⇒ y3 = et
2 − t2 + C ⇒ y =

3
√
et2 − t2 + C
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(c) We rewrite the differential equation as y2−1+2ty ·y′ = 0, and try to find a function u = u(y, t)
such that u′t = y2−1 and u′y = 2ty to find out if the equation is exact. We see that u = y2t− t
is a solution, so the differential equation is exact, with solution y2t − t = C. The initial
condition y(1) = 3 gives 9− 1 = C, or C = 8. The solution is therefore

t(y2 − 1) = 8 ⇒ y =

√
8

t
+ 1

Question 4.

We rewrite the optimization problem in standard form as

max −(x2 + y2 + z2) subject to − 2x2 − 6y2 − 3z2 ≤ −36

(a) The Lagrangian for this problem is given by L = −(x2 + y2 + z2)− λ(−2x2 − 6y2 − 3z2), and
the first order conditions are

L′x = −2x+ 4xλ = 0

L′y = −2y + 12yλ = 0

L′z = −2z + 6zλ = 0

We solve the first order conditions, and get x = 0 or λ = 1
2 from the first equation, y = 0 or

λ = 1
6 from the second, and z = 0 or λ = 1

3 from the third. The constraint is −2x2−6y2−3z2 ≤
−36, and the complementary slackness conditions are that λ ≥ 0, and moreover that λ = 0 if
the constraint is not binding (that is, if −2x2− 6y2− 3z2 < −36). We shall find all admissible
points that satisfy the first order condition and the complementary slackness condition. In
the case where the constraint is not binding (that is, −2x2 − 6y2 − 3z2 < −36), we have
λ = 0 and therefore x = y = z = 0 from the first order conditions. This point does not
satisfy −2x2 − 6y2 − 3z2 < −36, and it is therefore not a solution. In the case where the
constraint is binding (−2x2 − 6y2 − 3z2 = −36), we have that either x = y = z = 0, or that
at least one of these variables are non-zero. In the first case, x = y = z = 0 does not satisfy
−2x2 − 6y2 − 3z2 = −36, so this is not a solution. In the second case, we see that exactly
one of the variables is non-zero (otherwise λ would take two different values), so we have the
following possibilities: 

x = ±
√

18, y = z = 0, λ = 1
2

x = 0, y = ±
√

6, z = 0, λ = 1
6

x = y = 0, z = ±
√

12, λ = 1
3

These six points are the admissible points that satisfies the first order conditions and the
complementary slackness conditions.

(b) We compute the value of the function f(x, y, z) = x2 + y2 + z2 in the six points we found
above, and get

f(±
√

18, 0, 0) = 18, f(0,±
√

6, 0) = 6, f(0, 0,±
√

12) = 12

Hence the best candidates for minimum are the points (x, y, z;λ) = (0,±
√

6, 0; 1
6). We com-

pute the Hessian of the Lagrangian function L(x, y, z, 1/6) and find that

L′′(x, y, z, 1/6) =


−2 + 4/6 0 0

0 −2 + 12/6 0

0 0 −2 + 6/6

 =


−4/3 0 0

0 0 0

0 0 −1


We see that this Lagrangian is concave, hence the given points are max for −f , and therefore
min for f . It therefore follows that f = 6 at (x, y, z) = (0,±

√
6, 0) is the minimum.
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