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Question 1.

(a) We compute the partial derivatives f ′x = 1 − 1/d, f ′y = 1 − 2/d and f ′z = 1 − 3/d, where we
write d = x+ 2y + 3z. The stationary points are given by the equations

1− 1/d = 0, 1− 2/d = 0, 1− 3/d = 0

and this set of equations have no solutions (the first equation gives d = 1, and this does not
fit in the other equations). There are therefore no stationary points.

(b) We compute the second order partial derivatives of f and form the Hessian matrix

f ′′ =

1/d2 · 1 1/d2 · 2 1/d2 · 3
2/d2 · 1 2/d2 · 2 2/d2 · 3
3/d2 · 1 3/d2 · 2 3/d2 · 3

 =
1

d2

1 2 3
2 4 6
3 6 9


We see that the matrix has rank one, so all second and third order principal minors are 0.
The first order principal minors are 1/d2, 4/d2, 9/d2 > 0. This implies that f is convex but
not concave.

Question 2.

(a) To find the eigenvalues of A, we solve the characteristic equation det(A − λI) = 0, and this
gives∣∣∣∣∣∣

3− λ 4 5
0 2− λ 0
1 3 7− λ

∣∣∣∣∣∣ = (2− λ)(λ2 − 10λ+ 16) = 0 ⇒ λ = 2, λ = 2, λ = 8

This means that the eigenvalues of A are λ = 2,2,8 (λ = 2 has multiplicity two) and the
determinant is det(A) = 2 · 2 · 8 = 32. Since det(A) 6= 0, we have rkA = 3.

(b) The eigenvalues for λ = 2 are given by (A− 2I)x = 0, or1 4 5
0 0 0
1 3 5

x = 0 ⇒ x = t

 5
0
−1


where t is a free variable. Similarly, the eigenvalues for λ = 8 are given by (A− 8I)x = 0, or−5 4 5

0 −6 0
1 3 −1

x = 0 ⇒ x = t

1
0
1


where t is a free variable. Since λ = 2 has multiplicity 2 and only has one linearly independent
eigenvector (one free variable), A is not diagonalizable.



(c) If there is a common eigenvector for A and B, one of the eigenvectors for A must also be an
eigenvector for B. In this case, either

x1 =

 5
0
−1

 or x2 =

1
0
1


must be an eigenvector for B, since any (non-zero) scalar multiple of an eigenvector is an
eigenvector. We check if this is the case and start with x1:

Bx1 =

0 1 5
1 3 5
1 7 4

 5
0
−1

 =

−5
0
1

 = −1 · x1

Therefore, it follows that x1 is a common eigenvector for A and B. (In fact, any vector
of the form tx1 is a common eigenvector. On the other hand, if we do the same computation
for x2, we see that it is not an eigenvector of B, and this means that the vectors tx2 are not
common eigenvectors for A and B.) Finally if x is an eigenvector for A with eigenvalue λ and
an eigenvector for B with eigenvalue λ′, then

(AB)x = A(Bx) = A(λ′x) = λ′(Ax) = λ′(λx) = (λλ′)x

This means that x is also an eigenvector for AB (with eigenvalue λλ′).

Question 3.

(a) We re-write the differential equation as

(x+ 1)tẋ+ (t+ 1)x = 0 ⇒ (x+ 1)ẋ = −(t+ 1)x

t
⇒ x+ 1

x
ẋ = − t+ 1

t

This differential equation is separated, so the original difference equation is separable. We
integrate on both sides:∫

(1 +
1

x
) dx = −

∫
(1 +

1

t
) dt ⇒ x+ ln(|x|) = −(t+ ln(|t|)) + C

The initial condition x(1) = 1 gives 1 + ln 1 = −1 − ln 1 + C, or C = 2. This solution can
therefore be described implicitly by the equation

x + t + ln |x|+ ln |t| = 2

It is not necessary (or possible) to solve this equation for x.
(b) We try to multiply the differential equation by ex+t and get the new differential equation

(x+ 1)tex+tẋ+ (t+ 1)xex+t = P (x, t)ẋ+Q(x, t) = 0

with P (x, t) = (x+ 1)tex+t and Q(x, t) = (t+ 1)xex+t. We have

P ′
t = (x+ 1)ex+t + t(x+ 1)ex+t = (t+ 1)(x+ 1)ex+t

and

Q′
x = (t+ 1)ex+t + x(t+ 1)ex+t = (t+ 1)(x+ 1)ex+t

We see that P ′
t = Q′

x, and it follows that the new differential equation is exact. To solve it,
we find a function h(x, t) such that h′x = P (x, t) and h′t = Q(x, t). The first equation gives

h′x = P (x, t) = (x+ 1)tex+t ⇒ h =

∫
(x+ 1)tex+t dx = tet

∫
(x+ 1)ex dx

Using integration by parts, we find∫
(x+ 1)ex dx = (x+ 1)ex −

∫
1 · ex dx = (x+ 1)ex − ex + C = xex + C

This implies that

h = tet
∫

(x+ 1)ex dx = tetxex + C(t) = txex+t + C(t)
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where C(t) is a function of t (or a constant considered as a function in x). The second equation
is h′t = Q(x, t), and we use the expression above for h:

h′t = Q(x, t) ⇒ xex+t + txex+t + C′(t) = (t+ 1)xex+t + C′(t) = (t+ 1)xex+t

We see that this condition holds if and only if C′(t) = 0, or if C = C1 is a constant. In
conclusion, we may choose h = txex+t + C1, and the general solution of the exact differential
equation is h = C2, where C2 is another constant. This gives

txex+t = B

where B = C2 − C1 is a new constant. The initial condition is x(1) = 1, and this gives
1 · e2 = B, or B = e2. The solution can therefore be written in implicit form as

txex+t = e2

It is not necessary (or possible) to solve this equation for x. (If we first take absolute values
on both sides of the equation, and then the natural logarithm, we obtain the equation from
question a).

Question 4.

We consider the optimization problem

min 2x2 + y2 + 3z2 subject to

{
x− y + 2z = 3

x+ y = 3

(a) The Lagrangian for this problem is given by L = 2x2 + y2 + 3z2 − λ1(x− y+ 2z)− λ2(x+ y),
and the first order conditions are

L′x = 4x− λ1 − λ2 = 0

L′y = 2y + λ1 − λ2 = 0

L′z = 6z − 2λ1 = 0

We solve the first order conditions for x, y, z and get

x =
λ1 + λ2

4
, y =

λ2 − λ1
2

, z =
λ1
3

When we substitute these expressions into the two constraints x− y + 2z = 3 and x+ y = 3,
we get the equations

17λ1 − 3λ2 = 36, −λ1 + 3λ2 = 12

Adding the two equations, we get 16λ1 = 48, or λ1 = 3, and the last equation gives λ2 = 5.
When we substitute this into the expressions for x, y, z we get (x, y, z) = (2, 1, 1). This
means that (x, y, z;λ1, λ2) = (2, 1, 1; 3, 5) is the unique point that satisfies the first
order conditions and the constraints. Alternatively, one may observe that the first order
conditions and the constraints form a 5×5 linear system. If we substitute (x, y, z) = (2, 1, 1) in
this system, we find that λ1 = 3 and λ2 = 5; hence (x, y, z;λ1, λ2) = (2, 1, 1; 3, 5) is one solution
of the system. To show that this is the only solution, we may check that the determinant of
the coefficient matrix is non-zero. We first use some elementary row operations that preserve
the determinant: ∣∣∣∣∣∣∣∣∣∣

4 0 0 −1 −1
0 2 0 1 −1
0 0 6 −2 0
1 −1 2 0 0
1 1 0 0 0

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
4 0 0 −1 −1
0 2 0 1 −1
0 0 6 −2 0
0 0 0 17/12 −1/4
0 0 0 −1/4 3/4

∣∣∣∣∣∣∣∣∣∣
Then we see that the determinant is given by 4 · 2 · 6 · (17/4 · 3/4− 1/4 · 1/4) = 48 6= 0.
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(b) The bordered Hessian at (x, y, z;λ1, λ2) = (2, 1, 1; 3, 5) is the matrix

B =


0 0 1 −1 2
0 0 1 1 0
1 1 4 0 0
−1 1 0 2 0
2 0 0 0 6


Since there are n = 3 variables and m = 2 constratints, we have to compute the n −m = 1
last principal minors; that is, just the determinant D5 = |B|. We first use an elementary row
operation to simplify the computation, then develop the determinant along the last column:

|B| =

∣∣∣∣∣∣∣∣∣∣
0 0 1 −1 2
0 0 1 1 0
1 1 4 0 0
−1 1 0 2 0
2 0 0 0 6

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
0 0 1 −1 2
0 0 1 1 0
1 1 4 0 0
−1 1 0 2 0
2 0 −3 3 0

∣∣∣∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣∣∣
0 0 1 1
1 1 4 0
−1 1 0 2
2 0 −3 3

∣∣∣∣∣∣∣∣
Then we develop the last determinant along the first row, and get

|B| = 2

∣∣∣∣∣∣∣∣
0 0 1 1
1 1 4 0
−1 1 0 2
2 0 −3 3

∣∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
1 1 0
−1 1 2
2 0 3

∣∣∣∣∣∣−
∣∣∣∣∣∣

1 1 4
−1 1 0
2 0 −3

∣∣∣∣∣∣
 = 2(10 + 14) = 48

Since |B| = 48 > 0 has the same sign as (−1)m = (−1)2 = 1, we conclude that the point
(x, y, z) = (2, 1, 1) is a local minimum for 2x2 + y2 + 3z2 (among the admissible points).
The local minimum value is f(2, 1, 1) = 8 + 1 + 3 = 12.

(c) We fix λ1 = 3 and λ2 = 5, and consider the Lagrangian

L(x, y, z) = 2x2 + y2 + 3z2 − 3(x− y + 2z)− 5(x+ y)

This function is clearly convex, since the Hessian matrix

L′′ =

4 0 0
0 2 0
0 0 6


is positive definite (with eigenvalues 4, 2, 6). Therefore, the point (x, y, z) = (2, 1, 1) solves
the minimum problem. The Kuhn-Tucker problem can be reformulated in standard form
as

max−(2x2 + y2 + 3z2) subject to

{
−(x− y + 2z) ≤ −3

−(x+ y) ≤ −3

Therefore, we see that the Lagrangian of the Kuhn-Tucker problem is

−(2x2 + y2 + 3z2) + λ1(x− y + 2z) + λ2(x+ y) = −L
and the first order conditions of the Kuhn-Tucker problem are the same as in the original
problem. Hence (x, y, z;λ1, λ2) = (2, 1, 1; 3, 5) is still a solution of the first order conditions and
the constraints, and λ1, λ2 ≥ 0 also solves the complementary slackness conditions. When we
fix λ1 = 3 and λ2 = 5, −L is concave since L is convex, and this means that (x, y, z) = (2, 1, 1)
also solves the Kuhn-Tucker problem.
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