## Solutions:

Examination date:
Permitted examination aids:
Bl-approved exam calculator: TEXAS INSTRUMENTS BA II Plus ${ }^{\text {TM }}$
Answer sheets:
Total number of pages: 4

Bilingual dictionary

Squares

## GRA 60353 Mathematics

12.12.2011, 09:00-12:00
,

## Question 1.

(a) We compute the partial derivatives $f_{x}^{\prime}=1-1 / d, f_{y}^{\prime}=1-2 / d$ and $f_{z}^{\prime}=1-3 / d$, where we write $d=x+2 y+3 z$. The stationary points are given by the equations

$$
1-1 / d=0, \quad 1-2 / d=0, \quad 1-3 / d=0
$$

and this set of equations have no solutions (the first equation gives $d=1$, and this does not fit in the other equations). There are therefore no stationary points.
(b) We compute the second order partial derivatives of $f$ and form the Hessian matrix

$$
f^{\prime \prime}=\left(\begin{array}{ccc}
1 / d^{2} \cdot 1 & 1 / d^{2} \cdot 2 & 1 / d^{2} \cdot 3 \\
2 / d^{2} \cdot 1 & 2 / d^{2} \cdot 2 & 2 / d^{2} \cdot 3 \\
3 / d^{2} \cdot 1 & 3 / d^{2} \cdot 2 & 3 / d^{2} \cdot 3
\end{array}\right)=\frac{1}{d^{2}}\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{array}\right)
$$

We see that the matrix has rank one, so all second and third order principal minors are 0 . The first order principal minors are $1 / d^{2}, 4 / d^{2}, 9 / d^{2}>0$. This implies that $f$ is convex but not concave.

## Question 2.

(a) To find the eigenvalues of $A$, we solve the characteristic equation $\operatorname{det}(A-\lambda I)=0$, and this gives

$$
\left|\begin{array}{ccc}
3-\lambda & 4 & 5 \\
0 & 2-\lambda & 0 \\
1 & 3 & 7-\lambda
\end{array}\right|=(2-\lambda)\left(\lambda^{2}-10 \lambda+16\right)=0 \quad \Rightarrow \quad \lambda=2, \lambda=2, \lambda=8
$$

This means that the eigenvalues of $A$ are $\lambda=\mathbf{2 , 2 , 8}(\lambda=2$ has multiplicity two $)$ and the determinant is $\operatorname{det}(A)=2 \cdot 2 \cdot 8=\mathbf{3 2}$. Since $\operatorname{det}(A) \neq 0$, we have $\mathrm{rk} A=\mathbf{3}$.
(b) The eigenvalues for $\lambda=2$ are given by $(A-2 I) \mathbf{x}=\mathbf{0}$, or

$$
\left(\begin{array}{lll}
1 & 4 & 5 \\
0 & 0 & 0 \\
1 & 3 & 5
\end{array}\right) \mathbf{x}=\mathbf{0} \quad \Rightarrow \quad \mathbf{x}=\mathbf{t}\left(\begin{array}{c}
5 \\
0 \\
-1
\end{array}\right)
$$

where $t$ is a free variable. Similarly, the eigenvalues for $\lambda=8$ are given by $(A-8 I) \mathbf{x}=\mathbf{0}$, or

$$
\left(\begin{array}{ccc}
-5 & 4 & 5 \\
0 & -6 & 0 \\
1 & 3 & -1
\end{array}\right) \mathbf{x}=\mathbf{0} \quad \Rightarrow \quad \mathbf{x}=\mathbf{t}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

where $t$ is a free variable. Since $\lambda=2$ has multiplicity 2 and only has one linearly independent eigenvector (one free variable), $A$ is not diagonalizable.
(c) If there is a common eigenvector for $A$ and $B$, one of the eigenvectors for $A$ must also be an eigenvector for $B$. In this case, either

$$
\mathbf{x}_{1}=\left(\begin{array}{c}
5 \\
0 \\
-1
\end{array}\right) \text { or } \mathbf{x}_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

must be an eigenvector for $B$, since any (non-zero) scalar multiple of an eigenvector is an eigenvector. We check if this is the case and start with $\mathbf{x}_{1}$ :

$$
B \mathbf{x}_{1}=\left(\begin{array}{lll}
0 & 1 & 5 \\
1 & 3 & 5 \\
1 & 7 & 4
\end{array}\right)\left(\begin{array}{c}
5 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{c}
-5 \\
0 \\
1
\end{array}\right)=-1 \cdot \mathbf{x}_{1}
$$

Therefore, it follows that $\mathbf{x}_{1}$ is a common eigenvector for $A$ and $B$. (In fact, any vector of the form $t \mathbf{x}_{1}$ is a common eigenvector. On the other hand, if we do the same computation for $\mathbf{x}_{2}$, we see that it is not an eigenvector of $B$, and this means that the vectors $t \mathbf{x}_{2}$ are not common eigenvectors for $A$ and $B$.) Finally if $\mathbf{x}$ is an eigenvector for $A$ with eigenvalue $\lambda$ and an eigenvector for $B$ with eigenvalue $\lambda^{\prime}$, then

$$
(A B) \mathbf{x}=A(B \mathbf{x})=A\left(\lambda^{\prime} \mathbf{x}\right)=\lambda^{\prime}(A \mathbf{x})=\lambda^{\prime}(\lambda \mathbf{x})=\left(\lambda \lambda^{\prime}\right) \mathbf{x}
$$

This means that $\mathbf{x}$ is also an eigenvector for $A B$ (with eigenvalue $\lambda \lambda^{\prime}$ ).

## Question 3.

(a) We re-write the differential equation as

$$
(x+1) t \dot{x}+(t+1) x=0 \Rightarrow(x+1) \dot{x}=-\frac{(t+1) x}{t} \Rightarrow \quad \frac{x+1}{x} \dot{x}=-\frac{t+1}{t}
$$

This differential equation is separated, so the original difference equation is separable. We integrate on both sides:

$$
\int\left(1+\frac{1}{x}\right) \mathrm{d} x=-\int\left(1+\frac{1}{t}\right) \mathrm{d} t \quad \Rightarrow \quad x+\ln (|x|)=-(t+\ln (|t|))+\mathcal{C}
$$

The initial condition $x(1)=1$ gives $1+\ln 1=-1-\ln 1+\mathcal{C}$, or $\mathcal{C}=2$. This solution can therefore be described implicitly by the equation

$$
\mathbf{x}+\mathbf{t}+\ln |\mathbf{x}|+\ln |\mathbf{t}|=\mathbf{2}
$$

It is not necessary (or possible) to solve this equation for $x$.
(b) We try to multiply the differential equation by $e^{x+t}$ and get the new differential equation

$$
(x+1) t e^{x+t} \dot{x}+(t+1) x e^{x+t}=P(x, t) \dot{x}+Q(x, t)=0
$$

with $P(x, t)=(x+1) t e^{x+t}$ and $Q(x, t)=(t+1) x e^{x+t}$. We have

$$
P_{t}^{\prime}=(x+1) e^{x+t}+t(x+1) e^{x+t}=(t+1)(x+1) e^{x+t}
$$

and

$$
Q_{x}^{\prime}=(t+1) e^{x+t}+x(t+1) e^{x+t}=(t+1)(x+1) e^{x+t}
$$

We see that $P_{t}^{\prime}=Q_{x}^{\prime}$, and it follows that the new differential equation is exact. To solve it, we find a function $h(x, t)$ such that $h_{x}^{\prime}=P(x, t)$ and $h_{t}^{\prime}=Q(x, t)$. The first equation gives

$$
h_{x}^{\prime}=P(x, t)=(x+1) t e^{x+t} \Rightarrow h=\int(x+1) t e^{x+t} \mathrm{~d} x=t e^{t} \int(x+1) e^{x} \mathrm{~d} x
$$

Using integration by parts, we find

$$
\int(x+1) e^{x} \mathrm{~d} x=(x+1) e^{x}-\int 1 \cdot e^{x} \mathrm{~d} x=(x+1) e^{x}-e^{x}+\mathcal{C}=x e^{x}+\mathcal{C}
$$

This implies that

$$
h=t e^{t} \int(x+1) e^{x} \mathrm{~d} x=t e^{t} x e^{x}+\mathcal{C}(t)=t x e^{x+t}+\mathcal{C}(t)
$$

where $\mathcal{C}(t)$ is a function of $t$ (or a constant considered as a function in $x$ ). The second equation is $h_{t}^{\prime}=Q(x, t)$, and we use the expression above for $h$ :

$$
h_{t}^{\prime}=Q(x, t) \quad \Rightarrow \quad x e^{x+t}+t x e^{x+t}+\mathcal{C}^{\prime}(t)=(t+1) x e^{x+t}+\mathcal{C}^{\prime}(t)=(t+1) x e^{x+t}
$$

We see that this condition holds if and only if $\mathcal{C}^{\prime}(t)=0$, or if $\mathcal{C}=C_{1}$ is a constant. In conclusion, we may choose $h=t x e^{x+t}+C_{1}$, and the general solution of the exact differential equation is $h=C_{2}$, where $C_{2}$ is another constant. This gives

$$
t x e^{x+t}=B
$$

where $B=C_{2}-C_{1}$ is a new constant. The initial condition is $x(1)=1$, and this gives $1 \cdot e^{2}=B$, or $B=e^{2}$. The solution can therefore be written in implicit form as

$$
\mathrm{txe}^{\mathrm{x}+\mathrm{t}}=\mathrm{e}^{2}
$$

It is not necessary (or possible) to solve this equation for $x$. (If we first take absolute values on both sides of the equation, and then the natural logarithm, we obtain the equation from question a).

## Question 4.

We consider the optimization problem

$$
\min 2 x^{2}+y^{2}+3 z^{2} \text { subject to } \begin{cases}x-y+2 z & =3 \\ x+y & =3\end{cases}
$$

(a) The Lagrangian for this problem is given by $\mathcal{L}=2 x^{2}+y^{2}+3 z^{2}-\lambda_{1}(x-y+2 z)-\lambda_{2}(x+y)$, and the first order conditions are

$$
\begin{aligned}
& \mathcal{L}_{x}^{\prime}=4 x-\lambda_{1}-\lambda_{2}=0 \\
& \mathcal{L}_{y}^{\prime}=2 y+\lambda_{1}-\lambda_{2}=0 \\
& \mathcal{L}_{z}^{\prime}=6 z-2 \lambda_{1}=0
\end{aligned}
$$

We solve the first order conditions for $x, y, z$ and get

$$
x=\frac{\lambda_{1}+\lambda_{2}}{4}, \quad y=\frac{\lambda_{2}-\lambda_{1}}{2}, \quad z=\frac{\lambda_{1}}{3}
$$

When we substitute these expressions into the two constraints $x-y+2 z=3$ and $x+y=3$, we get the equations

$$
17 \lambda_{1}-3 \lambda_{2}=36, \quad-\lambda_{1}+3 \lambda_{2}=12
$$

Adding the two equations, we get $16 \lambda_{1}=48$, or $\lambda_{1}=3$, and the last equation gives $\lambda_{2}=5$. When we substitute this into the expressions for $x, y, z$ we get $(x, y, z)=(2,1,1)$. This means that $\left(x, y, z ; \lambda_{1}, \lambda_{2}\right)=(2,1,1 ; 3,5)$ is the unique point that satisfies the first order conditions and the constraints. Alternatively, one may observe that the first order conditions and the constraints form a $5 \times 5$ linear system. If we substitute $(x, y, z)=(2,1,1)$ in this system, we find that $\lambda_{1}=3$ and $\lambda_{2}=5$; hence $\left(x, y, z ; \lambda_{1}, \lambda_{2}\right)=(2,1,1 ; 3,5)$ is one solution of the system. To show that this is the only solution, we may check that the determinant of the coefficient matrix is non-zero. We first use some elementary row operations that preserve the determinant:

$$
\left|\begin{array}{ccccc}
4 & 0 & 0 & -1 & -1 \\
0 & 2 & 0 & 1 & -1 \\
0 & 0 & 6 & -2 & 0 \\
1 & -1 & 2 & 0 & 0 \\
1 & 1 & 0 & 0 & 0
\end{array}\right|=\left|\begin{array}{ccccc}
4 & 0 & 0 & -1 & -1 \\
0 & 2 & 0 & 1 & -1 \\
0 & 0 & 6 & -2 & 0 \\
0 & 0 & 0 & 17 / 12 & -1 / 4 \\
0 & 0 & 0 & -1 / 4 & 3 / 4
\end{array}\right|
$$

Then we see that the determinant is given by $4 \cdot 2 \cdot 6 \cdot(17 / 4 \cdot 3 / 4-1 / 4 \cdot 1 / 4)=48 \neq 0$.
(b) The bordered Hessian at $\left(x, y, z ; \lambda_{1}, \lambda_{2}\right)=(2,1,1 ; 3,5)$ is the matrix

$$
B=\left(\begin{array}{ccccc}
0 & 0 & 1 & -1 & 2 \\
0 & 0 & 1 & 1 & 0 \\
1 & 1 & 4 & 0 & 0 \\
-1 & 1 & 0 & 2 & 0 \\
2 & 0 & 0 & 0 & 6
\end{array}\right)
$$

Since there are $n=3$ variables and $m=2$ constratints, we have to compute the $n-m=1$ last principal minors; that is, just the determinant $D_{5}=|B|$. We first use an elementary row operation to simplify the computation, then develop the determinant along the last column:

$$
|B|=\left|\begin{array}{ccccc}
0 & 0 & 1 & -1 & 2 \\
0 & 0 & 1 & 1 & 0 \\
1 & 1 & 4 & 0 & 0 \\
-1 & 1 & 0 & 2 & 0 \\
2 & 0 & 0 & 0 & 6
\end{array}\right|=\left|\begin{array}{ccccc}
0 & 0 & 1 & -1 & 2 \\
0 & 0 & 1 & 1 & 0 \\
1 & 1 & 4 & 0 & 0 \\
-1 & 1 & 0 & 2 & 0 \\
2 & 0 & -3 & 3 & 0
\end{array}\right|=2\left|\begin{array}{cccc}
0 & 0 & 1 & 1 \\
1 & 1 & 4 & 0 \\
-1 & 1 & 0 & 2 \\
2 & 0 & -3 & 3
\end{array}\right|
$$

Then we develop the last determinant along the first row, and get

$$
|B|=2\left|\begin{array}{cccc}
0 & 0 & 1 & 1 \\
1 & 1 & 4 & 0 \\
-1 & 1 & 0 & 2 \\
2 & 0 & -3 & 3
\end{array}\right|=2\left(\left|\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 2 \\
2 & 0 & 3
\end{array}\right|-\left|\begin{array}{ccc}
1 & 1 & 4 \\
-1 & 1 & 0 \\
2 & 0 & -3
\end{array}\right|\right)=2(10+14)=48
$$

Since $|B|=48>0$ has the same sign as $(-1)^{m}=(-1)^{2}=1$, we conclude that the point $(x, y, z)=(2,1,1)$ is a local minimum for $2 x^{2}+y^{2}+3 z^{2}$ (among the admissible points). The local minimum value is $f(2,1,1)=8+1+3=\mathbf{1 2}$.
(c) We fix $\lambda_{1}=3$ and $\lambda_{2}=5$, and consider the Lagrangian

$$
\mathcal{L}(x, y, z)=2 x^{2}+y^{2}+3 z^{2}-3(x-y+2 z)-5(x+y)
$$

This function is clearly convex, since the Hessian matrix

$$
\mathcal{L}^{\prime \prime}=\left(\begin{array}{lll}
4 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 6
\end{array}\right)
$$

is positive definite (with eigenvalues $4,2,6)$. Therefore, the point $(x, y, z)=(2,1,1)$ solves the minimum problem. The Kuhn-Tucker problem can be reformulated in standard form as

$$
\max -\left(2 x^{2}+y^{2}+3 z^{2}\right) \text { subject to } \begin{cases}-(x-y+2 z) & \leq-3 \\ -(x+y) & \leq-3\end{cases}
$$

Therefore, we see that the Lagrangian of the Kuhn-Tucker problem is

$$
-\left(2 x^{2}+y^{2}+3 z^{2}\right)+\lambda_{1}(x-y+2 z)+\lambda_{2}(x+y)=-\mathcal{L}
$$

and the first order conditions of the Kuhn-Tucker problem are the same as in the original problem. Hence $\left(x, y, z ; \lambda_{1}, \lambda_{2}\right)=(2,1,1 ; 3,5)$ is still a solution of the first order conditions and the constraints, and $\lambda_{1}, \lambda_{2} \geq 0$ also solves the complementary slackness conditions. When we fix $\lambda_{1}=3$ and $\lambda_{2}=5,-\mathcal{L}$ is concave since $\mathcal{L}$ is convex, and this means that $(x, y, z)=(2,1,1)$ also solves the Kuhn-Tucker problem.

