Problem Sheet 7 with Solutions GRA 6035 Mathematics

Problems

1. Find all extremal points for the function $f(x, y, z)=x^{4}+y^{4}+z^{4}+x^{2}+y^{2}+z^{2}$.
2. Show that the function $f(x, y)=x^{3}+y^{3}-3 x-2 y$ defined on the convex set $S=$ $\{(x, y): x>0, y>0\}$ is (strictly) convex, and find its global minimum.
3. A company produces two output goods, denoted by A and B. The cost per day is

$$
C(x, y)=0.04 x^{2}-0.01 x y+0.01 y^{2}+4 x+2 y+500
$$

when x units of A and y units of B are produced $(x>0, y>0)$. The firm sells all it produces at prices 13 per unit of A and 8 per unit of B. Find the profit function π and the values of x and y that maximizes profit.
4. The function $f(x, y, z)=x^{2}+2 x y+y^{2}+z^{3}$ is defined on $S=\{(x, y, z): z>0\}$. Show that S is a convex set. Find the stationary points of f and the Hessian matrix. Is f convex or concave? Does f have a global extremal point?
5. Show that the function $f(x, y, z)=x^{4}+y^{4}+z^{4}+x^{2}-x y+y^{2}+y z+z^{2}$ is convex.
6. Find all local extremal points for the function $f(x, y, z)=-2 x^{4}+2 y z-y^{2}+8 x$ and classify their type.
7. The function $f(x, y, z)=x^{2}+y^{2}+3 z^{2}-x y+2 x z+y z$ defined on \mathbb{R}^{3} has only one stationary point. Show that it is a local minimum.
8. Find all local extremal points for the function $f(x, y)=x^{3}-3 x y+y^{3}$ and classify their type.
9. The function $f(x, y, z)=x^{3}+3 x y+3 x z+y^{3}+3 y z+z^{3}$. Find all local extremal points for f and classify their type.
10. Find the solution $\left(x^{*}(a), y^{*}(a), z^{*}(a)\right)$ to the Lagrange problem

$$
\max f(x, y, z)=100-x^{2}-y^{2}-z^{2} \text { subject to } x+2 y+z=a
$$

and let $\lambda(a)$ be the corresponding Lagrange multiplier. Show that

$$
\lambda(a)=\frac{\partial f^{*}(a)}{\partial a}
$$

where $f^{*}(a)=f\left(x^{*}(a), y^{*}(a), z^{*}(a), \lambda(a)\right)$ is the optimal value function.
11. Solve the Lagrange problem

$$
\max f(x, y, z)=x+4 y+z \text { subject to }\left\{\begin{array}{l}
x^{2}+y^{2}+z^{2}=216 \\
x+2 y+3 z=0
\end{array}\right.
$$

Use the Lagrange multiplier to estimate the new maximum value when the constraints are changed to $x^{2}+y^{2}+z^{2}=215$ and $x+2 y+3 z=0.1$.
12. Final Exam in GRA6035 10/12/2010, Problem 1

We consider the function $f(x, y, z)=x^{2} e^{x}+y z-z^{3}$.
a) Find all stationary points of f.
b) Compute the Hessian matrix of f. Classify the stationary points of f as local maxima, local minima or saddle points.

13. Mock Final Exam in GRA6035 12/2010, Problem 2

a) Find all stationary points of $f(x, y, z)=e^{x y+y z-x z}$.
b) The function $g(x, y, z)=e^{a x+b y+c z}$ is defined on \mathbb{R}^{3}. Determine the values of the parameters a, b, c such that g is convex. Is it concave for any values of a, b, c ?

14. Final Exam in GRA6035 30/05/2011, Problem 1

We consider the function $f(x, y, z, w)=x^{5}+x y^{2}-z w$.
a) Find all stationary points of f.
b) Compute the Hessian matrix of f. Classify the stationary points of f as local maxima, local minima or saddle points.

Solutions

1 The partial derivatives of $f(x, y, z)=x^{4}+y^{4}+z^{4}+x^{2}+y^{2}+z^{2}$ are

$$
f_{x}^{\prime}=4 x^{3}+2 x, \quad f_{y}^{\prime}=4 y^{3}+2 y, \quad f_{z}^{\prime}=4 z^{3}+2 z
$$

The stationary points are given by $2 x\left(2 x^{2}+1\right)=2 y\left(2 y^{2}+1\right)=2 z\left(2 z^{2}+1\right)=0$, and this means that the unique stationary point is $(x, y, z)=(0,0,0)$. The Hessian of f is

$$
H(f)=\left(\begin{array}{ccc}
12 x^{2}+2 & 0 & 0 \\
0 & 12 y^{2}+2 & 0 \\
0 & 0 & 12 z^{2}+2
\end{array}\right)
$$

We see that $H(f)$ is positive definite, and therefore f is convex and $(0,0,0)$ is a global minimum point.
2 The partial derivatives of $f(x, y)=x^{3}+y^{3}-3 x-2 y$ are

$$
f_{x}^{\prime}=3 x^{2}-3, \quad f_{y}^{\prime}=3 y^{2}-2
$$

The stationary points are given by $3 x^{2}-3=3 y^{2}-2=0$, and this means that the unique stationary point in S is $(x, y, z)=(1, \sqrt{2 / 3})$. The Hessian of f is

$$
H(f)=\left(\begin{array}{cc}
6 x & 0 \\
0 & 6 y
\end{array}\right)
$$

We see that $H(f)$ is positive definite since $D_{1}=6 x>0$ and $D_{2}=36 x y>0$, and therefore f is convex and $(1, \sqrt{2 / 3})$ is a global minimum point.
3 The profit function $\pi(x, y)$ is defined on $\{(x, y): x>0, y>0\}$, and is given by

$$
\pi(x, y)=13 x+8 y-C(x, y)=-0.04 x^{2}+0.01 x y-0.01 y^{2}+9 x+6 y-500
$$

The Hessian of π is given by

$$
H(\pi)=\left(\begin{array}{cc}
-0.08 & 0.01 \\
0.01 & -0.02
\end{array}\right)
$$

and it is negative definite since $D_{1}=-0.08<0$ and $D_{2}=0.016-0.0001=$ $0.0159>0$, and therefore π is concave. The stationary point of π is given by

$$
\pi_{x}^{\prime}=-0.08 x+0.01 y+9=0, \quad \pi_{y}^{\prime}=0.01 x-0.02 y+6=0
$$

This gives $(x, y)=(160,380)$, which is the unique maximum point.
4 To prove that S is a convex set, pick any points $P=(x, y, z)$ and $Q=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ in S. By definition, $z>0$ and $z^{\prime}>0$, which implies that all points on the line segment $[P, Q]$ have positive z-coordinate as well. This means that $[P, Q]$ is contained in S,
and therefore S is convex. The partial derivatives of f are

$$
f_{x}^{\prime}=2 x+2 y, \quad f_{y}^{\prime}=2 x+2 y, \quad f_{z}^{\prime}=3 z^{2}
$$

Since $z>0$, there are no stationary points in S. The Hessian matrix of f is

$$
H(f)=\left(\begin{array}{ccc}
2 & 2 & 0 \\
2 & 2 & 0 \\
0 & 0 & 6 z
\end{array}\right)
$$

The principal minors are $\Delta_{1}=2,2,6 z>0, \Delta_{2}=0,12 z, 12 z>0$ and $\Delta_{3}=0$, so $H(f)$ is positive semidefinite and f is convex (but not strictly convex) on S. Since f has no stationary points and S is open (so there are no boundary points), f does not have global extremal points.
5 The partial derivatives of $f(x, y, z)=x^{4}+y^{4}+z^{4}+x^{2}-x y+y^{2}+y z+z^{2}$ are

$$
f_{x}^{\prime}=4 x^{3}+2 x-y, \quad f_{y}^{\prime}=4 y^{3}-x+2 y+z, \quad f_{z}^{\prime}=4 z^{3}+y+2 z
$$

and the Hessian matrix is

$$
H(f)=\left(\begin{array}{ccc}
12 x^{2}+2 & -1 & 0 \\
-1 & 12 y^{2}+2 & 1 \\
0 & 1 & 12 z^{2}+2
\end{array}\right)
$$

Since $D_{1}=12 x^{2}+2>0, D_{2}=\left(12 x^{2}+2\right)\left(12 y^{2}+2\right)-1=144 x^{2} y^{2}+24 x^{2}+24 y^{2}+$ $3>0$ and $D_{3}=-1\left(12 x^{2}+2\right)+\left(12 z^{2}+2\right) D_{2}=1728 x^{2} y^{2} z^{z}+288\left(x^{2} y^{2}+x^{2} z^{2}+\right.$ $\left.y^{2} z^{2}\right)+36 x^{2}+48 y^{2}+36 z^{2}+4>0$, we see that f is convex.

6 The partial derivatives of the function $f(x, y, z)=-2 x^{4}+2 y z-y^{2}+8 x$ is

$$
f_{x}^{\prime}=-8 x^{3}+8, \quad f_{y}^{\prime}=2 z-2 y, \quad f_{z}^{\prime}=2 y
$$

Hence the stationary points are given by $y=0, z=0, x=1$ or $(x, y, z)=(1,0,0)$.
The Hessian matrix of f is

$$
H(f)=\left(\begin{array}{ccc}
-24 x^{2} & 0 & 0 \\
0 & -2 & 2 \\
0 & 2 & 0
\end{array}\right) \quad \Rightarrow \quad H(f)(1,0,0)=\left(\begin{array}{ccc}
-24 & 0 & 0 \\
0 & -2 & 2 \\
0 & 2 & 0
\end{array}\right)
$$

Since $D_{1}=-24<0, D_{2}=48>0$, but $D_{3}=96>0$, we see that the stationary point $(1,0,0)$ is a saddle point.
7 The Hessian matrix of the function $f(x, y, z)=x^{2}+y^{2}+3 z^{2}-x y+2 x z+y z$ is

$$
H(f)=\left(\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 2 & 1 \\
2 & 1 & 6
\end{array}\right)
$$

Since $D_{1}=2>0, D_{2}=3>0, D_{3}=2(-5)-1(4)+6 D_{2}=4>0$, we see that $H(f)$ is positive definite, and that the unique stationary point is a local minimum point.
8 The partial derivatives of the function $f(x, y)=x^{3}-3 x y+y^{3}$ are

$$
f_{x}^{\prime}=3 x^{2}-3 y, \quad f_{y}^{\prime}=-3 x+3 y^{2}
$$

The stationary points are therefore given by $3 x^{2}-3 y=0$ or $y=x^{2}$, and $-3 x+3 y^{2}=$ 0 or $y^{2}=x^{4}=x$. This gives $x=0$ or $x^{3}=1$, that is, $x=1$. The stationary points are $(x, y)=(0,0),(1,1)$. The Hessian matrix of f is

$$
H(f)=\left(\begin{array}{cc}
6 x & -3 \\
-3 & 9 y
\end{array}\right) \quad \Rightarrow \quad H(f)(0,0)=\left(\begin{array}{cc}
0 & -3 \\
-3 & 0
\end{array}\right), H(f)(1,1)=\left(\begin{array}{cc}
6 & -3 \\
-3 & 9
\end{array}\right)
$$

In the first case, $D_{1}=0 ; D_{2}=-9<0$ so $(0,0)$ is a saddle point. In the second case, $D_{1}=6, D_{2}=45>0$, so $(1,1)$ is a local minimum point.
9 The partial derivatives of the function $f(x, y, z)=x^{3}+3 x y+3 x z+y^{3}+3 y z+z^{3}$ are

$$
f_{x}^{\prime}=3 x^{2}+3 y+3 z, \quad f_{y}^{\prime}=3 x+3 y^{2}+3 z, f_{z}^{\prime}=3 x+3 y+3 z^{2}
$$

The stationary points are given by $x^{2}+y+z=0, x+y^{2}+z=0$ and $x+y+z^{2}=0$. The first equation gives $z=-x^{2}-y$, and the second becomes $x+y^{2}+\left(-x^{2}-y\right)=0$, or $x-y=x^{2}-y^{2}=(x-y)(x+y)$. This implies that $x-y=0$ or that $x+y=1$. We see that $x+y=1$ implies that $1+z^{2}=0$ from the third equation, and this is impossible, and we infer that $x-y=0$, or $x=y$. Then $z=-x^{2}-x$ from the computation above, and the last equation gives

$$
x+y+z^{2}=2 x+\left(-x^{2}-x\right)^{2}=x^{4}+2 x^{3}+x^{2}+2 x=(x+2)\left(x^{3}+x\right)=0
$$

Hence $x=0, x=-2$ or $x^{2}+1=0$. The last equation has not solutions, se we get two stationary points $(x, y, z)=(0,0,0),(-2,-2,-2)$. The Hessian matrix of f at $(0,0,0)$ is

$$
H(f)=\left(\begin{array}{ccc}
6 x & 3 & 3 \\
3 & 6 y & 3 \\
3 & 3 & 6 z
\end{array}\right) \quad \Rightarrow \quad H(f)(0,0,0)=\left(\begin{array}{lll}
0 & 3 & 3 \\
3 & 0 & 3 \\
3 & 3 & 0
\end{array}\right)
$$

In this case, $D_{1}=0 ; D_{2}=-9<0$, so $(0,0,0)$ is a saddle point. At $(-2,-2,-2)$, the Hessian is

$$
H(f)=\left(\begin{array}{ccc}
6 x & 3 & 3 \\
3 & 6 y & 3 \\
3 & 3 & 6 z
\end{array}\right) \quad \Rightarrow \quad H(f)(-2,-2,-2)=\left(\begin{array}{ccc}
-12 & 3 & 3 \\
3 & -12 & 3 \\
3 & 3 & -12
\end{array}\right)
$$

In this case, $D_{1}=-12, D_{2}=135>0, D_{3}=-50<0$, so $(-2,-2,-2)$ is a local maximum point.

10 We consider the Lagrangian $\mathscr{L}(x, y, z, \lambda)=100-x^{2}-y^{2}-z^{2}-\lambda(x+2 y+z)$, and solve the first order conditions

$$
\begin{aligned}
\mathscr{L}_{x}^{\prime} & =-2 x-\lambda=0 \\
\mathscr{L}_{y}^{\prime} & =-2 y-\lambda \cdot 2=0 \\
\mathscr{L}_{z}^{\prime} & =-2 z-\lambda=0
\end{aligned}
$$

together with $x+2 y+z=a$. We get $2 x=-\lambda, 2 y=-2 \lambda, 2 z=-\lambda$ and (after multiplying the constraint by 2)

$$
-\lambda-4 \lambda-\lambda=2 a \quad \Rightarrow \quad \lambda=-a / 3
$$

The unique solution of the equations is $(x, y, z ; \lambda)=(a / 6, a / 3, a / 6 ;-a / 3)$. Since $\mathscr{L}(x, y, z ;-a / 3)$ is a concave function in (x, y, z), we have that this solution solves the maximum problem. The optimal value function

$$
f^{*}(a)=f(a / 6, a / 3, a / 6)=100-\frac{a^{2}}{36}-\frac{a^{2}}{9}-\frac{a^{2}}{36}=100-\frac{a^{2}}{6}
$$

We see that the derivative of the optimal value function is $-2 a / 6=-a / 3=\lambda(a)$.
11 We consider the Lagrangian

$$
\mathscr{L}\left(x, y, z, \lambda_{1}, \lambda_{2}\right)=x+4 y+z-\lambda_{1}\left(x^{2}+y^{2}+z^{2}\right)-\lambda_{2}(x+2 y+3 z)
$$

and solve the first order conditions

$$
\begin{aligned}
\mathscr{L}_{x}^{\prime} & =1-\lambda_{1} \cdot 2 x-\lambda_{2}=0 \\
\mathscr{L}_{y}^{\prime} & =4-\lambda_{1} \cdot 2 y-\lambda_{2} \cdot 2=0 \\
\mathscr{L}_{z}^{\prime} & =1-\lambda_{1} \cdot 2 z-\lambda_{2} \cdot 3=0
\end{aligned}
$$

together with $x^{2}+y^{2}+z^{2}=216$ and $x+2 y+3 z=0$. From the first order conditions, we get

$$
2 x \lambda_{1}=1-\lambda_{2}, 2 y \lambda_{1}=4-2 \lambda_{2}, 2 z \lambda_{1}=1-3 \lambda_{2}
$$

We see from these equations that we cannot have $\lambda_{1}=0$, and multiply the last constraint with $2 \lambda_{1}$. We get

$$
2 \lambda_{1}(x+2 y+3 z)=0 \quad \Rightarrow \quad\left(1-\lambda_{2}\right)+2\left(4-2 \lambda_{2}\right)+3\left(1-3 \lambda_{2}\right)=0
$$

This gives $12-14 \lambda_{2}=0$, or $\lambda_{2}=12 / 14=6 / 7$. We use this and solve for x, y, z, and get

$$
x=\frac{1}{14 \lambda_{1}}, y=\frac{8}{7 \lambda_{1}}, z=-\frac{11}{14 \lambda_{1}}
$$

Then we substitute this in the first constraint, and get

$$
\left(\frac{1}{14 \lambda_{1}}\right)^{2}\left(1+16^{2}+(-11)^{2}\right)=216 \quad \Rightarrow \quad 216 \cdot 14^{2} \lambda_{1}^{2}=378
$$

This implies that $\lambda_{1}= \pm \frac{\sqrt{7}}{28}$, and we have two solutions to the first order equations and constraints. Moreover, we see that $\mathscr{L}\left(x, y, z, \pm \frac{\sqrt{7}}{28}, \frac{6}{7}\right)$ is a concave function in (x, y, z) when $\lambda_{1}>0$, and convex when $\lambda_{1}<0$. Therefore, the solution

$$
\left(x^{*}, y^{*}, z^{*}\right)=\left(\frac{2}{7} \sqrt{7}, \frac{32}{7} \sqrt{7},-\frac{22}{7} \sqrt{7}\right)
$$

corresponding to $\lambda_{1}=\frac{\sqrt{7}}{28}$ solves the maximum problem, and the maximum value is

$$
f\left(x^{*}, y^{*}, z^{*}\right)=x^{*}+4 y^{*}+z^{*}=\frac{2+128-22}{7} \sqrt{7}=\frac{108}{7} \sqrt{7} \simeq 40.820
$$

When $b_{1}=216$ is changed to 215 and $b_{2}=0$ is changed to 0.1 , the approximate change in the the maximum value is given by

$$
\lambda_{1}(215-216)+\lambda_{2}(0.1-0)=(-1) \frac{\sqrt{7}}{28}+(0.1) \frac{6}{7} \simeq-0.009
$$

The estimate for the new maximum value is therefore $\simeq 40.811$.

12 Final Exam in GRA6035 10/12/2010, Problem 1

a) We compute the partial derivatives $f_{x}^{\prime}=\left(x^{2}+2 x\right) e^{x}, f_{y}^{\prime}=z$ and $f_{z}^{\prime}=y-3 z^{2}$. The stationary points are given by the equations

$$
\left(x^{2}+2 x\right) e^{x}=0, \quad z=0, \quad y-3 z^{2}=0
$$

and this gives $x=0$ or $x=-2$ from the first equation and $y=0$ and $z=0$ from the last two. The stationary points are therefore $(x, y, z)=(\mathbf{0}, \mathbf{0}, \mathbf{0}),(-\mathbf{2}, \mathbf{0}, \mathbf{0})$.
b) We compute the second order partial derivatives of f and form the Hessian matrix

$$
f^{\prime \prime}=\left(\begin{array}{ccc}
\left(x^{2}+4 x+2\right) e^{x} & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -6 z
\end{array}\right)
$$

We see that the second order principal minor obtained from the last two rows and columns is

$$
\left|\begin{array}{cc}
0 & 1 \\
1 & -6 z
\end{array}\right|=-1<0
$$

hence the Hessian is indefinite in all stationary points. Therefore, both stationary points are saddle points.

13 Mock Final Exam in GRA6035 12/2010, Problem 2

a) We write $f(x, y, z)=e^{u}$ with $u=x y+y z-x z$, and compute

$$
f_{x}^{\prime}=e^{u}(y-z), f_{y}^{\prime}=e^{u}(x+z), f_{z}^{\prime}=e^{u}(y-x)
$$

The stationary points of f are therefore given by

$$
y-z=0, x+z=0, y-x=0
$$

which gives $(x, y, z)=(0,0,0)$. This is the unique stationary points of f.
b) We write $f(x, y, z)=e^{u}$ with $u=a x+b y+c z$, and compute that

$$
g_{x}^{\prime}=e^{u} \cdot a, g_{y}^{\prime}=e^{u} \cdot b, g_{z}^{\prime}=e^{u} \cdot c
$$

and this gives Hessian matrix

$$
H(g)=\left(\begin{array}{lll}
a^{2} e^{u} & a b e^{u} & a c e^{u} \\
a b e^{u} & b^{2} & e^{u} \\
b c e^{u} \\
a c e^{u} & b c e^{u} & c^{2} e^{u}
\end{array}\right)=e^{u}\left(\begin{array}{lll}
a^{2} & a b & a c \\
a b & b^{2} & b c \\
a c & b c & c^{2}
\end{array}\right)
$$

This gives principal minors $\Delta_{1}=e^{u} a^{2}, e^{u} b^{2}, e^{u} c^{2} \geq 0, \Delta_{2}=0,0,0$ and $\Delta_{3}=0$. Hence g is convex for all values of a, b, c, and g is concave if and only if $a=b=$ $c=0$.

14 Final Exam in GRA6035 30/05/2011, Problem 1

a) We compute the partial derivatives $f_{x}^{\prime}=5 x^{4}+y^{2}, f_{y}^{\prime}=2 x y, f_{z}^{\prime}=-w$ and $f_{w}^{\prime}=-z$. The stationary points are given by

$$
5 x^{4}+y^{2}=0, \quad 2 x y=0, \quad-w=0, \quad-z=0
$$

and this gives $z=w=0$ from the last two equations, and $x=y=0$ from the first two. The stationary points are therefore $(x, y, z, w)=(\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0})$.
b) We compute the second order partial derivatives of f and form the Hessian matrix

$$
f^{\prime \prime}=\left(\begin{array}{cccc}
20 x^{3} & 2 y & 0 & 0 \\
2 y & 2 x & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

We see that the second order principal minor obtained from the last two rows and columns is

$$
\left|\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right|=-1<0
$$

hence the Hessian is indefinite. Therefore, the stationary point is a saddle point.

