Problem Sheet 2 with Solutions GRA 6035 Mathematics

Problems

1. Compute $4 A+2 B, A B, B A, B I$ and $I A$ when

$$
A=\left(\begin{array}{ll}
2 & 3 \\
4 & 1
\end{array}\right), \quad B=\left(\begin{array}{ll}
2 & 6 \\
7 & 0
\end{array}\right), \quad I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

2. One of the laws of matrix algebra states that $(A B)^{T}=B^{T} A^{T}$. Prove this when A and B are 2×2-matrices.
3. Simplify the following matrix expressions:

$$
\text { a) } A B(B C-C B)+(C A-A B) B C+C A(A-B) C
$$

b) $(A-B)(C-A)+(C-B)(A-C)+(C-A)^{2}$
4. A general $m \times n$-matrix is often written $A=\left(a_{i j}\right)_{m \times n}$, where $a_{i j}$ is the entry of A in row i and column j. Prove that if $m=n$ and $a_{i j}=a_{j i}$ for all i and j, then $A=A^{T}$. Give a concrete example of a matrix with this property, and explain why it is reasonable to call a matrix A symmetric when $A=A^{T}$.
5. Compute D^{2}, D^{3} and D^{n} when

$$
D=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

6. Write down the 3×3 linear system corresponding to the matrix equation $A \mathbf{x}=\mathbf{b}$ when

$$
A=\left(\begin{array}{ccc}
3 & 1 & 5 \\
5 & -3 & 2 \\
4 & -3 & -1
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
4 \\
-2 \\
-1
\end{array}\right)
$$

7. Initially, three firms A, B and C (numbered 1,2 and 3) share the market for a certain commodity. Firm A has 20% of the marked, B has 60% and C has 20%. In course of the next year, the following changes occur:

A keeps 85% of its customers, while losing 5% to B and 10% to C
B keeps 55% of its customers, while losing 10% to A and 35% to C
C keeps 85% of its customers, while losing 10% to A and 5\% to B
We can represent market shares of the three firms by means of a market share vector, defined as a column vector \mathbf{s} whose components are all non-negative and sum to 1 . Define the matrix \mathbf{T} and the initial share vector \mathbf{s} by

$$
T=\left(\begin{array}{ccc}
0.85 & 0.10 & 0.10 \\
0.05 & 0.55 & 0.05 \\
0.10 & 0.35 & 0.85
\end{array}\right), \quad \mathbf{s}=\left(\begin{array}{c}
0.2 \\
0.6 \\
0.2
\end{array}\right)
$$

The matrix T is called the transition matrix. Compute the vector $T \mathbf{s}$, show that it is also a market share vector, and give an interpretation. What is the interpretation of $T^{2} \mathbf{s}$ and $T^{3} \mathbf{s}$? Finally, compute $T \mathbf{q}$ when

$$
\mathbf{q}=\left(\begin{array}{c}
0.4 \\
0.1 \\
0.5
\end{array}\right)
$$

and give an interpretation.
8. Compute the following matrix product using partitioning. Check the result by ordinary matrix multiplication:

$$
\left(\begin{array}{cc|c}
1 & 1 & 1 \\
-1 & 0 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
2 & -1 \\
0 & 1 \\
\hline 1 & 1
\end{array}\right)
$$

9. If $A=\left(a_{i j}\right)_{n \times n}$ is an $n \times n$-matrix, then its determinant may be computed by

$$
|A|=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}
$$

where $C_{i j}$ is the cofactor in position (i, j). This is called cofactor expansion along the first row. Similarly one may compute $|A|$ by cofactor expansion along any row or column. Compute $|A|$ using cofactor expansion along the first column, and then along the third row, when

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 5 & 6 \\
1 & 0 & 8
\end{array}\right)
$$

Check that you get the same answer. Is A invertible?
10. Let A and B be 3×3-matrices with $|A|=2$ and $|B|=-5$. Find $|A B|,|-3 A|$ and $\left|-2 A^{T}\right|$. Compute $|C|$ when C is the matrix obtained from B by interchanging two rows.
11. Compute the determinant using elementary row operations:

$$
\left|\begin{array}{ccc}
3 & 1 & 5 \\
9 & 3 & 15 \\
-3 & -1 & -5
\end{array}\right|
$$

12. Without computing the determinants, show that

$$
\left|\begin{array}{ccc}
b^{2}+c^{2} & a b & a c \\
a b & a^{2}+c^{2} & b c \\
a c & b c & a^{2}+b^{2}
\end{array}\right|=\left|\begin{array}{ccc}
0 & c & b \\
c & 0 & a \\
b & a & 0
\end{array}\right|^{2}
$$

13. Find the inverse matrix A^{-1}, if it exists, when A is the matrix given by
a) $A=\left(\begin{array}{ll}1 & 3 \\ 1 & 3\end{array}\right)$
b) $A=\left(\begin{array}{cc}1 & 3 \\ -1 & 3\end{array}\right)$
c) $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$
14. Compute the cofactor matrix, the adjoint matrix and the inverse matrix of these matrices:

$$
\text { a) } A=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 5 & 6 \\
1 & 0 & 8
\end{array}\right) \quad \text { b) } \quad B=\left(\begin{array}{lll}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Verify that $A A^{-1}=I$ and that $B B^{-1}=I$.
15. Write the linear system of equations

$$
\begin{aligned}
& 5 x_{1}+x_{2}=3 \\
& 2 x_{1}-x_{2}=4
\end{aligned}
$$

on matrix form $A \mathbf{x}=\mathbf{b}$ and solve it using A^{-1}.
16. There is an efficient way of finding the inverse of a square matrix using row operations. Suppose we want to find the inverse of

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 3 \\
2 & 5 & 7
\end{array}\right)
$$

To do this we form the partitioned matrix

$$
(A \mid I)=\left(\begin{array}{lll|lll}
1 & 2 & 3 & 1 & 0 & 0 \\
1 & 3 & 3 & 0 & 1 & 0 \\
2 & 5 & 7 & 0 & 0 & 1
\end{array}\right)
$$

and then reduced it to reduced echelon form using elementary row operations: First, we add (-1) times the first row to the second row

$$
\left(\begin{array}{lll|ll}
1 & 2 & 3 & 1 & 0 \\
1 & 3 & 3 & 0 & 1 \\
2 & 5 & 7 & 0 & 0
\end{array}\right) \quad 1.2\left(\begin{array}{lll|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
2 & 5 & 7 & 0 & 0 & 1
\end{array}\right)
$$

Then we add (-2) times the first row to the last row

$$
\left(\begin{array}{lll|lll}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
2 & 5 & 7 & 0 & 0 & 1
\end{array}\right) \quad \Rightarrow \quad\left(\begin{array}{lll|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 1 & 1 & -2 & 0 & 1
\end{array}\right)
$$

Then we add (-1) times the second row to the third

$$
\left(\begin{array}{lll|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 1 & 1 & -2 & 0 & 1
\end{array}\right) \quad \Rightarrow \quad\left(\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 & -1 & 1
\end{array}\right)
$$

Next, we add (-3) times the last row to the first

$$
\left(\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 & -1 & 1
\end{array}\right) \quad \Rightarrow \quad\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & 4 & 3 & -3 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 & -1 & 1
\end{array}\right)
$$

Then we add (-2) times the second row to the first

$$
\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & 4 & 3 & -3 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 & -1 & 1
\end{array}\right) \quad \Rightarrow \quad\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 6 & 1 & -3 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 & -1 & 1
\end{array}\right)
$$

We now have the partitioned matrix $\left(I \mid A^{-1}\right)$ and thus

$$
A^{-1}=\left(\begin{array}{ccc}
6 & 1 & -3 \\
-1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right)
$$

Use the same technique to find the inverse of the following matrices:
a) $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
b) $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right)$
c) $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$
d) $\left(\begin{array}{lll}3 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$
17. Describe all minors of the matrix

$$
A=\left(\begin{array}{llll}
1 & 0 & 2 & 1 \\
0 & 2 & 4 & 2 \\
0 & 2 & 2 & 1
\end{array}\right)
$$

It is not necessary to compute all the minors.
18. Determine the ranks of these matrices for all values of the parameters:
a) $\left(\begin{array}{ccc}x & 0 & x^{2}-2 \\ 0 & 1 & 1 \\ -1 & x & x-1\end{array}\right)$
b) $\left(\begin{array}{ccc}t+3 & 5 & 6 \\ -1 & t-3 & -6 \\ 1 & 1 & t+4\end{array}\right)$
19. Give an example where $\operatorname{rk}(A B) \neq \operatorname{rk}(B A)$. Hint: Try some 2×2 matrices.
20. Use minors to determine if the systems have solutions. If they do, determine the number of degrees of freedom. Find all solutions and check the results.
a) $\begin{aligned}-2 x_{1}-3 x_{2}+x_{3} & =3 \\ 4 x_{1}+6 x_{2}-2 x_{3} & =1\end{aligned}$
b) $\begin{aligned} x_{1}+x_{2}-x_{3}+x_{4} & =2 \\ 2 x_{1}-x_{2}+x_{3}-3 x_{4} & =1\end{aligned}$
$x_{1}-x_{2}+2 x_{3}+x_{4}=1$
c) $\begin{aligned} 2 x_{1}+x_{2}-x_{3}+3 x_{4} & =3 \\ x_{1}+5 x_{2}-8 x_{3}+x_{4} & =1\end{aligned}$
$4 x_{1}+5 x_{2}-7 x_{3}+7 x_{4}=7$
d) $2 x_{1}+3 x_{2}-x_{3}-2 x_{4}=2$
$4 x_{1}+5 x_{2}+3 x_{3}=7$
21. Let $A \mathbf{x}=\mathbf{b}$ be a linear system of equations in matrix form. Prove that if \mathbf{x}_{1} and \mathbf{x}_{2} are both solutions of the system, then so is $\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2}$ for every number λ. Use this fact to prove that a linear system of equations that is consistent has either one solution or infinitely many solutions.
22. Find the rank of A for all values of the parameter t, and solve $A \mathbf{x}=\mathbf{b}$ when $t=-3$:

$$
\left.A=\left(\begin{array}{ccc}
1 & 3 & 2 \\
2 & 5 & t \\
4 & 7 & -t
\end{array}\right), \quad \mathbf{- 6}\right) ~, \quad\left(\begin{array}{c}
11 \\
3 \\
6
\end{array}\right)
$$

23. Midterm Exam in GRA6035 24/09/2010, Problem 1

Consider the linear system

$$
\left(\begin{array}{ccccc}
1 & -3 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & -4 \\
0 & 0 & 0 & 1 & 9 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
-2 \\
1 \\
4 \\
0
\end{array}\right)
$$

Which statement is true?

a) The linear system is inconsistent.
b) The linear system has a unique solution.
c) The linear system has one degree of freedom
d) The linear system has two degrees of freedom
e) I prefer not to answer.
24. Mock Midterm Exam in GRA6035 09/2010, Problem 1

Consider the linear system

$$
\left(\begin{array}{ccccc}
3 & -9 & 12 & -9 & 0 \\
0 & 2 & -4 & 4 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
-9 \\
-14 \\
4 \\
7
\end{array}\right)
$$

Which statement is true?
a) The linear system has a unique solution.
b) The linear system has one degree of freedom
c) The linear system has two degrees of freedom
d) The linear system is inconsistent.
e) I prefer not to answer.
25. Midterm Exam in GRA6035 24/05/2011, Problem 3

Consider the linear system

$$
\left(\begin{array}{ccccc}
1 & 2 & -3 & -1 & 0 \\
0 & 1 & 7 & 3 & -4 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{l}
3 \\
0 \\
2 \\
1
\end{array}\right)
$$

Which statement is true?

a) The linear system is inconsistent
b) The linear system has a unique solution
c) The linear system has one degree of freedom
d) The linear system has two degrees of freedom
e) I prefer not to answer.

Solutions

(1) We have

$$
4 A+2 B=\left(\begin{array}{cc}
12 & 24 \\
30 & 4
\end{array}\right), \quad A B=\left(\begin{array}{ll}
25 & 12 \\
15 & 24
\end{array}\right), \quad B A=\left(\begin{array}{ll}
28 & 12 \\
14 & 21
\end{array}\right), \quad B I=B, \quad I A=A
$$

2 Let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad B=\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)
$$

Then we have

$$
A B=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{l}
a x+b z \\
b w+a y \\
c x+d z \\
c x+c y
\end{array}\right) \Longrightarrow(A B)^{T}=\left(\begin{array}{l}
a x+b z \\
b w+d z \\
b w+a y \\
d w+c y
\end{array}\right)
$$

and

$$
A^{T}=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right), \quad B^{T}=\left(\begin{array}{ll}
x & z \\
y & w
\end{array}\right) \Longrightarrow B^{T} A^{T}=\left(\begin{array}{ll}
a x+b z & c x+d z \\
b w+a y & d w+c y
\end{array}\right)
$$

Comparing the expressions, we see that $(A B)^{T}=B^{T} A^{T}$.
(3) We have
(a) $A B(B C-C B)+(C A-A B) B C+C A(A-B) C=A B B C-A B C B+C A B C$

$$
-A B B C+C A A C-C A B C=-A B C B+C A A C=-A B C B+C A^{2} C
$$

(b) $(A-B)(C-A)+(C-B)(A-C)+(C-A)^{2}=A C-A^{2}-B C+B A+C A$

$$
-C^{2}-B A+B C+C^{2}-C A-A C+A^{2}=0
$$

4 The entry in position (j, i) in A^{T} equals the entry in position (i, j) in A. Therefore, a square matrix A satisfies $A^{T}=A$ if $a_{i j}=a_{j i}$. The matrix

$$
A=\left(\begin{array}{ccc}
13 & 3 & 2 \\
3 & -2 & 4 \\
2 & 4 & 3
\end{array}\right)
$$

has this property. The condition that $a_{i j}=a_{j i}$ is a symmetry along the diagonal of A, so it is reasonable to call a matrix with $A^{T}=A$ symmetric.
(5) We compute

$$
\begin{aligned}
D^{2} & =\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & -1
\end{array}\right)^{2}=\left(\begin{array}{lll}
4 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 1
\end{array}\right) \\
D^{3} & =\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & -1
\end{array}\right)^{3}=\left(\begin{array}{ccc}
8 & 0 & 0 \\
0 & -27 & 0 \\
0 & 0 & -1
\end{array}\right) \\
D^{n} & =\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & -1
\end{array}\right)^{n}=\left(\begin{array}{ccc}
2^{n} & 0 & 0 \\
0 & (-3)^{n} & 0 \\
0 & 0 & (-1)^{n}
\end{array}\right)
\end{aligned}
$$

6 We compute

$$
A \mathbf{x}=\left(\begin{array}{ccc}
3 & 1 & 5 \\
5 & -3 & 2 \\
4 & -3 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
3 x_{1}+x_{2}+5 x_{3} \\
5 x_{1}-3 x_{2}+2 x_{3} \\
4 x_{1}-3 x_{2}-x_{3}
\end{array}\right)
$$

Thus we see that $A \mathbf{x}=\mathbf{b}$ if and only if

$$
\begin{aligned}
& 3 x_{1}+x_{2}+5 x_{3}=4 \\
& 5 x_{1}-3 x_{2}+2 x_{3}=-2 \\
& 4 x_{1}-3 x_{2}-x_{3}=-1
\end{aligned}
$$

7 We compute

$$
T \mathbf{s}=\left(\begin{array}{ccc}
0.85 & 0.10 & 0.10 \\
0.05 & 0.55 & 0.05 \\
0.10 & 0.35 & 0.85
\end{array}\right)\left(\begin{array}{c}
0.2 \\
0.6 \\
0.2
\end{array}\right)=\left(\begin{array}{c}
0.25 \\
0.35 \\
0.4
\end{array}\right)
$$

This vector is a market share vector since $0.25+0.35+0.4=1$, and it represents the market shares after one year. We have $T^{2} \mathbf{s}=T(T \mathbf{s})$ and $T^{3} \mathbf{s}=T\left(T^{2} \mathbf{s}\right)$, so these vectors are the marked share vectors after two and three years. Finally, we compute

$$
T \mathbf{q}=\left(\begin{array}{ccc}
0.85 & 0.10 & 0.10 \\
0.05 & 0.55 & 0.05 \\
0.10 & 0.35 & 0.85
\end{array}\right)\left(\begin{array}{c}
0.4 \\
0.1 \\
0.5
\end{array}\right)=\left(\begin{array}{c}
0.4 \\
0.1 \\
0.5
\end{array}\right)
$$

We see that $T \mathbf{q}=\mathbf{q}$; if the market share vector is \mathbf{q}, then it does not change. Hence \mathbf{q} is an equilibrium.
8 We write the matrix product as

$$
\left(\begin{array}{cc|c}
1 & 1 & 1 \\
-1 & 0 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
2 & -1 \\
0 & 1 \\
\hline 1 & 1
\end{array}\right)=\left(\begin{array}{ll}
A & B
\end{array}\right)\binom{C}{D}=A C+B D
$$

We compute

$$
A C=\left(\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
2 & 0 \\
-2 & 1
\end{array}\right), \quad B D=\binom{1}{-1}\left(\begin{array}{ll}
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right)
$$

Hence, we get

$$
\left(\begin{array}{cc|c}
1 & 1 & 1 \\
-1 & 0 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
2 & -1 \\
0 & 1 \\
\hline 1 & 1
\end{array}\right)=\left(\begin{array}{cc}
2 & 0 \\
-2 & 1
\end{array}\right)+\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right)=\left(\begin{array}{cc}
3 & 1 \\
-3 & 0
\end{array}\right)
$$

Ordinary matrix multiplication gives the same result.
9 We first calculate $|A|$ using cofactor expansion along the first column:

$$
\begin{aligned}
|A| & =a_{11} A_{11}+a_{21} A_{21}+a_{31} A_{31} \\
& =(-1)^{1+1} \cdot 1 \cdot\left|\begin{array}{ll}
5 & 6 \\
0 & 8
\end{array}\right|+(-1)^{2+1} \cdot 0 \cdot\left|\begin{array}{ll}
2 & 3 \\
0 & 8
\end{array}\right|+(-1)^{3+1} \cdot 1 \cdot\left|\begin{array}{ll}
2 & 3 \\
5 & 6
\end{array}\right| \\
& =(5 \cdot 8-0 \cdot 6)+0+(2 \cdot 6-5 \cdot 3) \\
& =40+12-15=37
\end{aligned}
$$

We then calculate $|A|$ using cofactor expansion along the third row:

$$
\begin{aligned}
|A| & =a_{31} A_{31}+a_{32} A_{32}+a_{33} A_{33} \\
& =(-1)^{3+1} \cdot 1 \cdot\left|\begin{array}{ll}
2 & 3 \\
5 & 6
\end{array}\right|+(-1)^{3+2} \cdot 0 \cdot\left|\begin{array}{ll}
1 & 3 \\
0 & 6
\end{array}\right|+(-1)^{3+3} \cdot 8 \cdot\left|\begin{array}{ll}
1 & 2 \\
0 & 5
\end{array}\right| \\
& =(2 \cdot 6-5 \cdot 3)+0+8 \cdot(1 \cdot 5-0 \cdot 2) \\
& =12-15+8 \cdot 5=37
\end{aligned}
$$

We see that $\operatorname{det}(A)=37 \neq 0$ using both methods, hence A is invertible.
10 We compute

$$
\begin{aligned}
|A B| & =|A||B|=2 \cdot(-5)=-10 \\
|-3 A| & =(-3)^{3}|A|=(-27) \cdot 2=-54 \\
\left|-2 A^{T}\right| & =(-2)^{3}\left|A^{T}\right|=(-8) \cdot|A|=(-8) \cdot 2=-16 \\
|C| & =-|B|=-(-5)=5
\end{aligned}
$$

11 If we add the first row to the last row to simplify the determinant, we get

$$
\left|\begin{array}{ccc}
3 & 1 & 5 \\
9 & 3 & 15 \\
-3 & -1 & -5
\end{array}\right|=\left|\begin{array}{ccc}
3 & 1 & 5 \\
9 & 3 & 15 \\
0 & 0 & 0
\end{array}\right|=0
$$

12 We have that

$$
A=\left(\begin{array}{lll}
0 & c & b \\
c & 0 & a \\
b & a & 0
\end{array}\right) \quad \Rightarrow \quad A^{2}=\left(\begin{array}{ccc}
b^{2}+c^{2} & a b & a c \\
a b & a^{2}+c^{2} & b c \\
a c & b c & a^{2}+b^{2}
\end{array}\right)
$$

This implies that

$$
\left|\begin{array}{lll}
0 & c & b \\
c & 0 & a \\
b & a & 0
\end{array}\right|^{2}=|A|^{2}=|A||A|=|A A|=\left|A^{2}\right|=\left|\begin{array}{ccc}
b^{2}+c^{2} & a b & a c \\
a b & a^{2}+c^{2} & b c \\
a c & b c & a^{2}+b^{2}
\end{array}\right|
$$

13 To determine which matrices are invertible, we calculate the determinants:

$$
\text { a) } \left.\left.\quad\left|\begin{array}{ll}
1 & 3 \\
1 & 3
\end{array}\right|=0, \quad b\right) \quad\left|\begin{array}{rr}
1 & 3 \\
-1 & 3
\end{array}\right|=6 \neq 0, \quad c\right) \quad\left|\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right|=1 \neq 0
$$

Hence the matrices in b) and c) are invertible, and we have
b) $\left(\begin{array}{cc}1 & 3 \\ -1 & 3\end{array}\right)^{-1}=\left(\begin{array}{cc}\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{6} & \frac{1}{6}\end{array}\right)$,
c) $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)^{-1}=\left(\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right)$

14 In order to find the cofactor matrix, we must find all the cofactors of A :

$$
\begin{aligned}
& C_{11}=(-1)^{1+1} \cdot\left|\begin{array}{ll}
5 & 6 \\
0 & 8
\end{array}\right|=40, C_{12}=(-1)^{1+2} \cdot\left|\begin{array}{ll}
0 & 6 \\
1 & 8
\end{array}\right|=6, C_{13}=(-1)^{3+1} \cdot\left|\begin{array}{ll}
0 & 5 \\
1 & 0
\end{array}\right|=-5 \\
& C_{21}=(-1)^{2+1} \cdot\left|\begin{array}{ll}
2 & 3 \\
0 & 8
\end{array}\right|=-16, C_{22}=(-1)^{2+2} \cdot\left|\begin{array}{ll}
1 & 3 \\
1 & 8
\end{array}\right|=5, C_{23}=(-1)^{2+3} \cdot\left|\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right|=2 \\
& C_{31}=(-1)^{3+1} \cdot\left|\begin{array}{ll}
2 & 3 \\
5 & 6
\end{array}\right|=-3, C_{32}=(-1)^{3+2} \cdot\left|\begin{array}{ll}
1 & 3 \\
0 & 6
\end{array}\right|=-6, C_{33}=(-1)^{3+3} \cdot\left|\begin{array}{ll}
1 & 2 \\
0 & 5
\end{array}\right|=5
\end{aligned}
$$

From this we find the cofactor matrix and the adjoint matrix of A :

$$
\left(\begin{array}{ccc}
40 & 6 & -5 \\
-16 & 5 & 2 \\
-3 & -6 & 5
\end{array}\right) \Rightarrow\left(\begin{array}{ccc}
40 & 6 & -5 \\
-16 & 5 & 2 \\
-3 & -6 & 5
\end{array}\right)^{T}=\left(\begin{array}{ccc}
40 & -16 & -3 \\
6 & 5 & -6 \\
-5 & 2 & 5
\end{array}\right)
$$

The determinant $|A|$ of A is 37 from the problem above. The inverse matrix is then

$$
A^{-1}=\frac{1}{37}\left(\begin{array}{ccc}
40 & -16 & -3 \\
6 & 5 & -6 \\
-5 & 2 & 5
\end{array}\right)=\left(\begin{array}{ccc}
\frac{40}{37} & -\frac{16}{37} & -\frac{3}{37} \\
\frac{6}{37} & \frac{5}{37} & -\frac{6}{37} \\
-\frac{5}{37} & \frac{2}{37} & \frac{5}{37}
\end{array}\right)
$$

Similarly, we find the cofactor matrix and the adjoint matrix of B to be

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-b & 0 & 1
\end{array}\right) \quad \Rightarrow \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-b & 0 & 1
\end{array}\right)^{T}=\left(\begin{array}{ccc}
1 & 0 & -b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We compute that $|B|=1$, and it follows that B^{-1} is given by

$$
B^{-1}=\left(\begin{array}{ccc}
1 & 0 & -b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We verify that $A A^{-1}=B B^{-1}=I$.
15 We note that

$$
\binom{5 x_{1}+x_{2}}{2 x_{1}-x_{2}}=\left(\begin{array}{cc}
5 & 1 \\
2 & -1
\end{array}\right)\binom{x_{1}}{x_{2}} .
$$

This means that

$$
\begin{aligned}
& 5 x_{1}+x_{2}=3 \\
& 2 x_{1}-x_{2}=4
\end{aligned}
$$

is equivalent to

$$
\left(\begin{array}{cc}
5 & 1 \\
2 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{3}{4} .
$$

We thus have

$$
A=\left(\begin{array}{cc}
5 & 1 \\
2 & -1
\end{array}\right), \mathbf{x}=\binom{x_{1}}{x_{2}}, \mathbf{b}=\binom{3}{4} .
$$

Since $|A|=5(-1)-2 \cdot 1=-7 \neq 0, A$ is invertible. By the formula for the inverse of an 2×2-matrix, we get

$$
A^{-1}=\left(\begin{array}{cc}
\frac{1}{7} & \frac{1}{7} \\
\frac{2}{7} & -\frac{5}{7}
\end{array}\right) .
$$

If we multiply the matrix equation $A \mathbf{x}=\mathbf{b}$ on the left by A^{-1}, we obtain

$$
A^{-1} A \mathbf{x}=A^{-1} \mathbf{b}
$$

Now, the important point is that $A^{-1} A=I$ and $I \mathbf{x}=\mathbf{x}$. Thus we get that $\mathbf{x}=A^{-1} \mathbf{b}$. From this we find the solution:

$$
\mathbf{x}=\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
\frac{1}{7} & \frac{1}{7} \\
\frac{2}{7} & -\frac{5}{7}
\end{array}\right)\binom{3}{4}=\binom{1}{-2} .
$$

In other words $x_{1}=1$ and $x_{2}=-2$.
$16\left(\right.$ a) $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)^{-1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
(b) $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right)^{-1}=\left(\begin{array}{lll}\frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)^{-1}=\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)$
(d) $\left(\begin{array}{lll}3 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)^{-1}=\left(\begin{array}{ccc}\frac{1}{3} & -\frac{1}{3} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2}\end{array}\right)$

17 Removing a column gives a 3 -minor. Thus there are 4 minors of order 3. To get a 2-minor, we must remove a row and two columns. There are $3 \cdot 4 \cdot 3 / 2=18$ ways to do this, so there are 18 minors of order 2. The 1-minors are the entries of the matrix, so there are $3 \cdot 4=12$ minors of order 1 .

18 (a) We compute the determinant

$$
\left|\begin{array}{ccc}
x & 0 & x^{2}-2 \\
0 & 1 & 1 \\
-1 & x & x-1
\end{array}\right|=x^{2}-x-2 .
$$

We have that $x^{2}-x-2=0$ if and only if $x=-1$ or $x=2$, so if $x \neq-1$ and $x \neq 2$, then $r(A)=3$. If $x=-1$, then

$$
A=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
0 & 1 & 1 \\
-1 & -1 & -2
\end{array}\right)
$$

Since for instance $\left|\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right|=-1 \neq 0$, it follows that $r(A)=2$. If $x=2$, then

$$
A=\left(\begin{array}{ccc}
2 & 0 & 2 \\
0 & 1 & 1 \\
-1 & 2 & 1
\end{array}\right)
$$

Since for instance $\left|\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right|=2 \neq 0$, we see that $r(A)=2$.
(b) We compute the determinant

$$
\left|\begin{array}{ccc}
t+3 & 5 & 6 \\
-1 & t-3 & -6 \\
1 & 1 & t+4
\end{array}\right|=(t+4)(t+2)(t-2)
$$

Hence the rank is 3 if $t \neq-4, t \neq-2$, and $t \neq 2$. The rank is 2 if $t=-4, t=-2$, or $t=2$, since there is a non-zero minor of order 2 in each case.

19 See answers to [FMEA] 1.3.3 on page 559.

20 See answers to [FMEA] 1.4.1 on page 559.
$21 A\left(\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2}\right)=\lambda A \mathbf{x}_{1}+(1-\lambda) A \mathbf{x}_{2}=\lambda \mathbf{b}+(1-\lambda) \mathbf{b}=\mathbf{b}$. This shows that if \mathbf{x}_{1} and \mathbf{x}_{2} are different solutions, then so are all points on the straight line through \mathbf{x}_{1} and \mathbf{x}_{2}.

22 See answers to [FMEA] 1.4.6 on page 560.

23 Midterm Exam in GRA6035 24/09/2010, Problem 1

Since the augmented matrix of the system is in echelon form, we see that the system is consistent and has two free variables, x_{3} and x_{5}. Hence the correct answer is alternative 4.

24 Mock Midterm Exam in GRA6035 09/2010, Problem 1

Since the augmented matrix of the system is in echelon form, we see that the system is inconsistent. Hence the correct answer is alternative 4.

25 Midterm Exam in GRA6035 24/05/2011, Problem 3

Since the augmented matrix of the system is in echelon form, we see that the system is inconsistent. Hence the correct answer is alternative 1.

