The first order leading principal minor is $F_{xx} = 6x$ and the second order leading principal minor is $\det D^2 F(\mathbf{x}) = -36xy - 81$. At (0,0), these two minors are 0 and -81, respectively. Since the second order leading principal minor is negative, (0,0) is a saddle of F—neither a max nor a min. At (3,-3), these two minors are 18 and 243. Since these two numbers are positive, $D^2 F(3,-3)$ is positive definite and (3,-3) is a strict local min of F.

Notice that (3, -3) is not a *global* min, because at the point (0, n), $F(0, n) = -n^3$, which goes to $-\infty$ as $n \to \infty$.

EXERCISES

For each of the following functions defined on R², find the critical points and classify these as local max, local min, saddle point, or "can't tell":

a)
$$x^4 + x^2 - 6xy + 3y^2$$
, b) $x^2 - 6xy + 2y^2 + 10x + 2y - 5$, c) $xy^2 + x^3y - xy$, d) $3x^4 + 3x^2y - y^3$.

VE

fc

SE

17.2 For each of the following functions defined on R³, find the critical points and classify them as local max, local min, saddle point, or "can't tell":

a)
$$x^2 + 6xy + y^2 - 3yz + 4z^2 - 10x - 5y - 21z$$
,
b) $(x^2 + 2y^2 + 3z^2)e^{-(x^2+y^2+z^2)}$.

17.4 GLOBAL MAXIMA AND MINIMA

The first and second order sufficient conditions of the last section will find all the local maxima and minima of a differentiable function whose domain is an open set in \mathbb{R}^n . As Example 17.2 illustrates, these conditions say nothing about whether or not any of these local extrema is a *global* max or min. In this section, we will discuss sufficient conditions for global maxima and minima of a real-valued function on \mathbb{R}^n .

The study of one-dimensional optimization problems in Section 3.5 put forth two conditions for a critical point x^* of f to be a global max (or min), when f is a C^2 function defined on a connected interval I of \mathbb{R}^1 :

(1) x^* is a local max (or min) and it's the only critical point of f in I; or

(2) $f'' \le 0$ on all of I (or $f'' \ge 0$ on I for a min), that is, f is a concave function on I (or f is a convex function for a min).

Condition 1 does not work in higher dimensions, as the function F whose level sets are pictured in Figure 17.1 illustrates. The point A in Figure 17.1 is a local max of F in the open set U. Even though A is the only critical point of F in U, the function F takes on a higher value at point B.