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1 Introduction to Constrained Optimization

In going from unconstrained optimization problems to constrained optimization problems,
we go from the problem

Maximize: f(x, y)

to the problem

Maximize: f(x, y)

subject to: g(x, y) = c

So far, we have looked at unconstrained optimization problems, where we are asked to
maximize a function of one or several variables, without any constraints on the variables.

Example 1.1. For example, in Lecture 5, we wanted to maximize a company’s profit func-
tion

P (x, y) = −x2 − 2y2 + 30x+ 15y − 50,

where x was millions of USD spent on research, and y millions of USD spent on advertising.
By calculating partial derivatives, we found the maximization point (x, y) = (15, 3.75).

In this problem, there were no constraints on the variables x and y. Any point (x, y)
that maximizes the function P is a solution. But what if the company could only spend a
total of 10 million USD on research and advertising? Then we have the constraint

x+ y = 10.

With this constraint, our unconstrained maximizer (15, 3.75) is no longer a solution, so we
need to find a new maximization point. However, we can’t just take partial derivatives of
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the profit function P as before, since x+y = 10 is an external constraint and is not captured
by the dynamics or slopes of P .

The maximization problem

Maximize: P (x, y) = −x2 − 2y2 + 30x+ 15y − 50,

subject to: x+ y = 10.

is an example of a constrained optimization problem. Problems of this nature are of huge rel-
evance in economics: Consumers optimize their consumption decisions, constrained by their
budget; Companies that want to maximize their profits, might have production constraints,
due to limitations on their labour force.

So the main question of this lecture is, how can we incorporate external constraints into
an optimization problem, so that all solutions reflect this constraint? We will take a look at
the more intuitive, but impractical, approach, before we do the Lagrange Multiplier method.

2 Direct Substitution

A consumer has decided to spend all her available income on two goods, X and Y . The price
of good X is px, and the price of good Y is py. x and y denotes how much is purchased of
goods X and Y respectively. The consumer’s available income is m. So we have the budget
constraint

xpx + ypy = m.

The consumer’s ranking of a purchase is described by the utility function U(x, y). For two
different purchasing options (x1, y1) and (x2, y2), the inequality

U(x1, y1) > U(x2, y2)

means exactly that the consumer prefers the purchase (x1, y1) to the purchase (x2, y2). So
when deciding how much to buy of good X and of Y , the consumer wants to maximize
U(x, y), and so she faces the constrained optimization problem

Maximize: U(x, y),

subject to: xpx + ypy = m.

One simple way of solving such a constrained optimization problem is to use the constraint
to write y in terms of x:

xpx + ypy = m

becomes

y =
m− xpx

py
.

Then we can plug this into the function we want to maximize, U(x, y) to get the uncon-
strained maximization problem in one variable:

Maximize: U

(
x,
m− xpx

py

)
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Example 2.1. Suppose the consumer has 200 kroner to spend on apples and oranges. The
apples cost px = 1 and the oranges cost py = 2. Let x denote the number of apples purchased,
and y the number of oranges purchased. The utility function is

U(x, y) = xy,

so we need to solve

Maximize: U(x, y) = xy,

subject to: x+ 2y = 200.

We rewrite the constraint to get

y =
200− x

2
= 100− x

2
.

We then plug this into the utility function:

U

(
x, 100− x

2

)
= x

(
100− x

2

)
= 100x− x2

2
.

What we have done is to derive a new function in only one variable,

f(x) = 100x− x2

2

which describes the utility function U(x, y) for all values of x that satisfy the budget con-
straint x + 2y = 200. This function f can easily be maximized with standard optimization
techniques:

1. We differentiate f :
f ′(x) = 100− x

2. We set f ′(x) = 0 to find stationary points:

100− x = 0 =⇒ x = 100.

3. We find the second-order derivative to check that x∗ = 100 maximizes the function:

f ′′(x) = −1 =⇒ f ′′(100) = −1 < 0

so by the second derivative test, x∗ = 100 maximizes the function.

Therefore, the consumer optimizes her utility when she purchases x = 100 apples. Since

y = 100− x

2
,

we conclude that y = 100 − 100/2 = 50. So the optimal purchase is 100 apples and
50 oranges.
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While this method is simple and intuitive, it is not good for more complicated constraint
functions:

Example 2.2. Consider the constrained optimization problem

Maximize: f(x, y) = x2 + y2,

subject to: x2 + xy + y2 = 12.

Now it is more difficult to use the constraint function x2 + xy + y2 = 12 to write y in terms
of x. It is in fact a quadratic expression, with the solutions

y =
−x+

√
x2 − 4(x2 − 12)

2
and y =

−x−
√
x2 − 4(x2 − 12)

2
,

but trying to plug these solutions into f(x, y) to maximize it would probably be a very
tiresome process.

Other times, it might be impossible to separate the variables x and y in the constraint
function, so that you cannot write y in terms of x. The Lagrange multiplier method, on the
other hand, overcomes a lot of these difficulties.

3 The Lagrange Multiplier Method

Example 3.1. Consider again the consumer maximization problem

Maximize: U(x, y) = xy,

subject to: x+ 2y = 200.

This problem was straightforward to solve by substitution but now we will use a different
method called the Lagrange multiplier method.

1. We define the Lagrangian function

L(x, y, λ) = U(x, y) + λ(x+ 2y − 200) = xy + λ(x+ 2y − 200).

The new variable λ is called the Lagrangian multiplier.

2. We differentiate L with respect to x, y and λ to get the three partial derivatives

L′x(x, y, λ) = y + λ,

L′y(x, y, λ) = x+ 2λ,

L′λ(x, y, λ) = x+ 2y − 200.

3. We set each partial derivative equal to zero, and solve for x, y and λ:

y + λ = 0 =⇒ y = −λ
x+ 2λ = 0 =⇒ x = −2λ

x+ 2y − 200 = 0 =⇒ x+ 2y = 200.
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4. This gives us a system of 3 equations, and we can plug the first two equations into the
third to get

−2λ+ 2(−λ) = 200

−4λ = 200

λ = −50.

This in return gives us the solution

x = 100, y = 50.

Note that this is the same solution that we got when using substitution.

The Lagrange Multiplier Method

We want to maximize f(x, y) given the constraint g(x, y) = c.

1. Define the Lagrangian function

L(x, y, λ) = f(x, y) + λ
(
g(x, y)− c

)
.

2. Compute partial derivatives L′x, L′y and L′λ and set them equal
to zero (the equation L′λ(x, y, λ) = 0 is always equivalent to the
constraint g(x, y) = c).

3. This gives us the (not necessarily linear) system of equations

f ′x(x, y) + λg′x(x, y) = 0

f ′y(x, y) + λg′y(x, y) = 0

g(x, y) = c

4. Solve these for x, y and λ.

Note: Any solution to the constrained optimization problem will also
solve the above system of equations, but not all solutions to the system
of equations is a solution to the constrained optimization problem. It is
therefore important to check that your answer makes sense: Make sure
the solution is a maximizer, not a minimizer, and if you get more than
one solution, you pick the one among those that maximize f(x, y).

The following theorem is a formal statement of how the Lagrange multiplier works:

Theorem 3.2. Suppose that the maximization problem ’maximize f(x, y) when g(x, y) = c’,
has a solution (x∗, y∗). Then there exists a Lagrange multiplier λ∗ such that (x∗, y∗, λ∗) solves

©Erlend Skaldehaug Riis 2015 5



FK1005 Lecture 6 3. THE LAGRANGE MULTIPLIER METHOD

the system of equations

f ′x(x, y) + λg′x(x, y) = 0

f ′y(x, y) + λg′y(x, y) = 0

g(x, y) = c

So if any solution to the constrained problem exists, then it can be located as a solution
to the above system of equations.

Example 3.3. Now we’ll try the problem

Maximize: f(x, y) = x2 + y2,

subject to: x2 + xy + y2 = 12.

1. We define the Lagrangian function

L(x, y, λ) = x2 + y2 + λ(x2 + xy + y2 − 12).

2. We differentiate L with respect to x, y and λ to get the three partial derivatives

L′x(x, y, λ) = 2x+ 2xλ+ yλ,

L′y(x, y, λ) = 2y + 2yλ+ xλ,

L′λ(x, y, λ) = x2 + xy + y2 − 12.

3. We set each partial derivative equal to zero, and solve for x, y and λ:

2x+ 2xλ+ yλ = 0 =⇒ λ =
−2x

2x+ y

2y + 2yλ+ xλ = 0 =⇒ λ =
−2y

x+ 2y

x2 + xy + y2 − 200 = 0 =⇒ x2 + xy + y2 = 12.

4. We combine the first two equations to get

−2x

2x+ y
=
−2y

x+ 2y

−2x(x+ 2y) = −2y(2x+ y)

x2 + 2xy = y2 + 2xy

x2 = y2

x = ±y

5. So we have two possibilities: y = x and y = −x.
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� We try the first case: If y = x, the constraint x2 + xy + y2 = 12 becomes

x2 + x2 + x2 = 12 =⇒ x2 = 4 =⇒ x = ±2.

Note that f(−x,−y) = f(x, y) so we don’t need to distinguish between the an-
swers (2, 2) and (−2,−2). So this gives us the solution (2, 2). We have

f(2, 2) = 4 + 4 = 8.

� Then we try the second case: If y = −x, the constraint x2 +xy+y2 = 12 becomes

x2 − x2 + x2 = 12 =⇒ x2 = 12 =⇒ x = ±
√

12.

So this gives us the solution (
√

12,−
√

12). We have

f(
√

12,−
√

12) = 12 + 12 = 24.

6. We conclude that (
√

12,−
√

12) (and (−
√

12,
√

12)) solves our constrained maximiza-
tion problem.

3.1 Things to Watch Out For

Sometimes the set of points (x, y) you want to maximize over have more restrictions than
just constraint g(x, y) = c. For example, we often assume that x and y are non-negative
(x ≥ 0, y ≥ 0). Then, however, in the case where the constrained optimization problem
has a solution located on the boundary of these restrictions (i.e. x = 0 or y = 0, then the
Lagrange method might not give you these solutions.

Example 3.4. To demonstrate this, we consider the maximization problem of maximizing
f(x, y) = x2 + y2 subject to the constraint x+ y = 10. Let us first allow for negative values
of x and y, so for example (−1, 11) is an admissible point. Then it is clear that there is no
upper bound for f(x, y) under this constraint, because no matter how large x is, you can set
y = 10− x, and you get

f(x, 10− x) = x2 + (10− x)2 = 2x2 + 100− 20x

which can be made arbitrarily large. So even under constraints, there is no solution to the
maximization problem.

Now let’s add the restrictions x ≥ 0 and y ≥ 0. These make sense for example if x and
y represent amount of goods to purchase, or something physical that cannot take negative
values. The restriction x + y = 10 then means that x and y cannot be larger than 10, so
f(x, y) = x2 + y2 is bounded. However, if we apply the Lagrange method, we get the system
of equations

2x = −λ
2y = −λ

x+ y = 10
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which has the unique solution
x = y = 5.

However, (5, 5) is not a maximizer, but a minimizer. If we plug it into f , we get

f(5, 5) = 25 + 25 = 50.

On the other hand, (10, 0) also satisfies the constraint, and if we plug it in, we get

f(10, 0) = 100.

The maximizers of this constrained optimization problem are in fact (10, 0) and (0, 10).
The Lagrange method did not find these points because they were on the boundary of the
constraints x ≥ 0 and y ≥ 0 respectively.

Remark 3.5. Other scenarios where the Lagrange multiplier method doesn’t work:

� If g′x(x
∗, y∗) = g′y(x

∗, y∗) = 0, it might not work.

� Both g′x and g′y have to be continuous and well-defined around the solution.

Example 3.6. Suppose you want to maximize

f(x, y) = x+ 4y,

subject to the constraint √
x+
√
y = 5.

We set up the Lagrangian function

L(x, y, λ) = x+ 4y + λ(
√
x+
√
y − 5)

We differentiate to get the system of equations

L′x(x, y, λ) = 1 +
λ

2
√
x

= 0

L′y(x, y, λ) = 4 +
λ

2
√
y

= 0

L′λ(x, y, λ) =
√
x+
√
y − 5.

Rearranging the first two equations and combining them, we get

−λ = 2
√
x = 8

√
y

which means that
x = 42y = 16y.

It also means that √
x = 4

√
y,
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so we can plug this into the constraint equation to get

4
√
y +
√
y = 5 =⇒ √

y = 1 =⇒ y = 1.

So we have the solution
x = 16, y = 1.

Plugging this into f gives us

f(16, 1) = 16 + 4 · 1 = 20.

But (x, y) = (0, 25) also solves the constraint, and plugging it into f gives us

f(0, 25) = 4 · 25 = 100.

So (16, 1) is not a solution to the maximizing problem. The real solution (0, 25) is not found

by the Lagrange method, because the function g′x(x, y) =
1

2
√
x

is not defined at x = 0.
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