## Name and student number:

Problem 1. Compute $-2 A+5 B$ when

$$
A=\left(\begin{array}{cc}
1 & 3 \\
-2 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
0 & 3 \\
2 & 1
\end{array}\right)
$$

Problem 2. Compute $A B$ and $B A$, if possible, for the following:
(1) $A=\left(\begin{array}{c}1 \\ -3 \\ 1\end{array}\right)$ and $B=\left(\begin{array}{ccc}-3 & 1 & 1\end{array}\right)$
(2) $A=\left(\begin{array}{cc}5 & -3 \\ 10 & 11\end{array}\right)$ and $B=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$
(3) $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}-1 & 2 \\ 3 & 2 \\ -1 & 2\end{array}\right)$

Problem 3. Compute the determinants
(a) $\left|\begin{array}{ll}1 & 2 \\ 4 & 8\end{array}\right|$
(b) $\left\lvert\, \begin{array}{cc}2 & -13 \\ -2 & 12\end{array}\right.$

Problem 4. Write

$$
\begin{aligned}
5 x_{1}-7 x_{2} & =-2 \\
7 x_{1}-10 x_{2} & =1
\end{aligned}
$$

as $A \mathbf{x}=\mathbf{b}$. Find $A^{-1}$ and use this to solve the system of equations.

Problem 5. Compute the determinant of $A$ by cofactor expansion along a suitable row and determine if the matrix is invertible.

$$
\text { (a) } A=\left(\begin{array}{ccc}
2 & -1 & 2 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right) \quad \text { (b) } A=\left(\begin{array}{cccc}
1 & -1 & 0 & 1 \\
0 & 2 & 0 & 1 \\
0 & 1 & 3 & -2 \\
-1 & 0 & 0 & 1
\end{array}\right)
$$

Problem 6. Write the following system of linear equations as $A \mathbf{x}=\mathbf{b}$ and use Cramers rule to find $x_{2}$ :

$$
\begin{array}{r}
2 x_{1}-x_{2}+2 x_{3}=0 \\
x_{1}-2 x_{2}-x_{3}=3 \\
x_{1}+x_{2}-x_{3}=0
\end{array}
$$

Problem 7. Find the inverse of the matrix

$$
A=\left(\begin{array}{ccc}
2 & -1 & 2 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right)
$$

if it exists.

Problem 8. Assume that

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
3 & -1 & 0 \\
10 & 0 & -1
\end{array}\right)
$$

Compute $A^{2}$. Is $A$ invertible? If so, find the inverse of $A$ without computing cofactors.

