Eivind Eriksen August 7th, 2009

Problem 7. Let $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 2 & 0 & 1 \end{pmatrix}.$ Find $\operatorname{adj}(A)$ and compute $A \operatorname{adj}(A)$ and $\operatorname{adj}(A)A$.

Solution.

$$\operatorname{adj}(A) = \begin{pmatrix} 1 & 0 & -2 \\ -2 & -3 & 1 \\ -2 & 0 & 1 \end{pmatrix}$$
$$A \operatorname{adj}(A) = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -2 \\ -2 & -3 & 1 \\ -2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$
$$\operatorname{adj}(A)A = \begin{pmatrix} 1 & 0 & -2 \\ -2 & -3 & 1 \\ -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

Problem 9. Compute the determinants										
(a)	$\begin{vmatrix} 2\\ 4 \end{vmatrix}$	$\begin{vmatrix} 3 \\ -1 \end{vmatrix}$	(b)	$\begin{array}{c} 1 \\ 0 \end{array}$	$\frac{3}{1}$	(c)	$\begin{vmatrix} a-b\\a \end{vmatrix}$	$\begin{vmatrix} a \\ a+b \end{vmatrix}$		

Sol	ution										
(a)	$\begin{vmatrix} 2\\ 4 \end{vmatrix}$	$3 \\ -1$	= -14	(b)	$ \begin{array}{ccc} 1 & 3 \\ 0 & 1 \end{array} $	=1	(c) $\begin{vmatrix} a \\ \end{vmatrix}$	$\begin{pmatrix} -b \\ a \end{pmatrix}$	a = a + b	$= -b^{2}$	

Problem 10. Write

$$x_1 + x_2 = 1$$
$$x_1 - 2x_2 = 0$$

 \mathbf{as}

$$A\mathbf{x} = \mathbf{b}.$$

Find A^{-1} and use this to solve the system of equations.

Solution.

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$A^{-1} = \frac{1}{(1)(-2)-(1)(1)} \begin{pmatrix} -2 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix}$$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A^{-1}\mathbf{b} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \\ \frac{1}{3} \end{pmatrix}$$

Problem 11. Write the following system of equations as $A\mathbf{x} = \mathbf{b}$: $x_1 + 4x_2 + x_3 = 0$ $x_1 + 5x_2 + x_3 = 1$ $2x_1 + 9x_2 + 3x_3 = 1$

Find the adjoint matrix $\operatorname{adj}(A)$. Compute $\operatorname{adj}(A)A$ and use this to solve the system of linear equation.

Solution.

$$A = \begin{pmatrix} 1 & 4 & 1 \\ 1 & 5 & 1 \\ 2 & 9 & 3 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

adj $(A) = \begin{pmatrix} 6 & -3 & -1 \\ -1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix}$
adj $(A)A = \begin{pmatrix} 6 & -3 & -1 \\ -1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 4 & 1 \\ 1 & 5 & 1 \\ 2 & 9 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 & -3 & -1 \\ -1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -4 \\ 1 \\ 0 \end{pmatrix}$