Solutions to Lecture 2: Matrix Algebra and Determinants

Eivind Eriksen

August 7th, 2009

Problem 7. Let

$$
A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
2 & 0 & 1
\end{array}\right)
$$

Find $\operatorname{adj}(A)$ and compute $A \operatorname{adj}(A)$ and $\operatorname{adj}(A) A$.

Solution.

$$
\begin{aligned}
& \operatorname{adj}(A)=\left(\begin{array}{ccc}
1 & 0 & -2 \\
-2 & -3 & 1 \\
-2 & 0 & 1
\end{array}\right) \\
& A \operatorname{adj}(A)=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -2 \\
-2 & -3 & 1 \\
-2 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-3 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & -3
\end{array}\right) \\
& \operatorname{adj}(A) A=\left(\begin{array}{ccc}
1 & 0 & -2 \\
-2 & -3 & 1 \\
-2 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
2 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-3 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & -3
\end{array}\right)
\end{aligned}
$$

Problem 9. Compute the determinants
(a) $\left.\begin{array}{cc}2 & 3 \\ 4 & -1\end{array} \right\rvert\,$
(b) $\left|\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right|$
(c) $\left|\begin{array}{cc}a-b & a \\ a & a+b\end{array}\right|$

Solution.
(a) $\left|\begin{array}{cc}2 & 3 \\ 4 & -1\end{array}\right|=-14$
(b) $\left|\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right|=1$
(c) $\left|\begin{array}{cc}a-b & a \\ a & a+b\end{array}\right|=-b^{2}$

Problem 10. Write

$$
\begin{gathered}
x_{1}+x_{2}=1 \\
x_{1}-2 x_{2}=0 \\
A \mathbf{x}=\mathbf{b}
\end{gathered}
$$

Find A^{-1} and use this to solve the system of equations.

$$
\begin{aligned}
& \text { Solution. } \\
& A=\left(\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right), \mathbf{x}=\binom{x_{1}}{x_{2}}, \mathbf{b}=\binom{1}{0} \\
& A^{-1}=\frac{1}{(1)(-2)-(1)(1)}\left(\begin{array}{cc}
-2 & -1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{cc}
\frac{2}{3} & \frac{1}{3} \\
\frac{1}{3} & -\frac{1}{3}
\end{array}\right) \\
& \mathbf{x}=\binom{x_{1}}{x_{2}}=A^{-1} \mathbf{b}=\left(\begin{array}{cc}
\frac{2}{3} & \frac{1}{3} \\
\frac{1}{3} & -\frac{1}{3}
\end{array}\right)\binom{1}{0}=\binom{\frac{2}{3}}{\frac{1}{3}}
\end{aligned}
$$

Problem 11. Write the following system of equations as $A \mathbf{x}=\mathbf{b}$:

$$
\begin{aligned}
x_{1}+4 x_{2}+x_{3} & =0 \\
x_{1}+5 x_{2}+x_{3} & =1 \\
2 x_{1}+9 x_{2}+3 x_{3} & =1
\end{aligned}
$$

Find the adjoint matrix $\operatorname{adj}(A) . \operatorname{Compute} \operatorname{adj}(A) A$ and use this to solve the system of linear equation.

Solution.

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
1 & 4 & 1 \\
1 & 5 & 1 \\
2 & 9 & 3
\end{array}\right), \mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), \mathbf{b}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \\
& \operatorname{adj}(A)=\left(\begin{array}{ccc}
6 & -3 & -1 \\
-1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right) \\
& \operatorname{adj}(A) A=\left(\begin{array}{ccc}
6 & -3 & -1 \\
-1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 4 & 1 \\
1 & 5 & 1 \\
2 & 9 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{ccc}
6 & -3 & -1 \\
-1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-4 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

