Solutions to Lecture 1: Matrices and Matrix Algebra

Eivind Eriksen

August 6th, 2009

Problem 6. Compute $A+B$ and $5 A$ when

$$
A=\left(\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
-2 & -3 \\
-3 & 0
\end{array}\right)
$$

Solution.
 $A+B=\left(\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right)+\left(\begin{array}{cc}-2 & -3 \\ -3 & 0\end{array}\right)=\left(\begin{array}{cc}0 & 0 \\ -2 & 1\end{array}\right)$
 $5 A=5 \cdot\left(\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right)=\left(\begin{array}{cc}10 & 15 \\ 5 & 5\end{array}\right)$

Problem 7. Compute $A+B, A-B$ and $3 A-2 B$ when

$$
A=\left(\begin{array}{ll}
2 & 3 \\
2 & 0 \\
0 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
1 & 3 \\
-3 & 0 \\
0 & 1
\end{array}\right)
$$

Solution.

$A+B=\left(\begin{array}{ll}2 & 3 \\ 2 & 0 \\ 0 & 1\end{array}\right)+\left(\begin{array}{cc}1 & 3 \\ -3 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}3 & 6 \\ -1 & 0 \\ 0 & 2\end{array}\right)$
$A-B=\left(\begin{array}{ll}2 & 3 \\ 2 & 0 \\ 0 & 1\end{array}\right)-\left(\begin{array}{cc}1 & 3 \\ -3 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 5 & 0 \\ 0 & 0\end{array}\right)$
$3 A-2 B=3\left(\begin{array}{ll}2 & 3 \\ 2 & 0 \\ 0 & 1\end{array}\right)-2\left(\begin{array}{cc}1 & 3 \\ -3 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}4 & 3 \\ 12 & 0 \\ 0 & 1\end{array}\right)$

Problem 8. Compute $A B$ and $B A$ when

$$
A=\left(\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
-2 & -3 \\
-3 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \text { Solution. } \\
& A B=\left(\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
-2 & -3 \\
-3 & 0
\end{array}\right)=\left(\begin{array}{cc}
-13 & -6 \\
-5 & -3
\end{array}\right) \\
& B A=\left(\begin{array}{cc}
-2 & -3 \\
-3 & 0
\end{array}\right)\left(\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
-7 & -9 \\
-6 & -9
\end{array}\right)
\end{aligned}
$$

Problem 9. Compute $A B$ and $B A$, if possible, for the following:
(1) $A=\left(\begin{array}{ll}2 & 3 \\ 2 & 0 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{lll}3 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
(2) $A=\left(\begin{array}{l}2 \\ 2 \\ 0\end{array}\right)$ and $B=\left(\begin{array}{lll}3 & 1 & 0\end{array}\right)$
(3) $A=\left(\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}2 & 3 \\ 2 & 0 \\ 0 & 1\end{array}\right)$

Solution.

(1)
$A B=\left(\begin{array}{ll}2 & 3 \\ 2 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{lll}3 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{lll}6 & 2 & 3 \\ 6 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
$B A=\left(\begin{array}{lll}3 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3 \\ 2 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}8 & 9 \\ 0 & 1\end{array}\right)$
(2)
$A B=\left(\begin{array}{l}2 \\ 2 \\ 0\end{array}\right)\left(\begin{array}{lll}3 & 1 & 0\end{array}\right)=\left(\begin{array}{lll}6 & 2 & 0 \\ 6 & 2 & 0 \\ 0 & 0 & 0\end{array}\right)$
$B A=\left(\begin{array}{lll}3 & 1 & 0\end{array}\right)\left(\begin{array}{l}2 \\ 2 \\ 0\end{array}\right)=8$
(3)
$A B$ is not defined.
$B A=\left(\begin{array}{ll}2 & 3 \\ 2 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right)=\left(\begin{array}{ll}7 & 9 \\ 4 & 6 \\ 1 & 1\end{array}\right)$

Problem 10. The percentage that will vote for parties Left, Center and Right is given as follows:

	Left	Center	Right	No. of
Oslo	46%	12%	42%	550000
Akershus	40%	12%	48%	500000
Vestfold	46%	10%	44%	253000

Use matrix multiplication to compute the total number of voters for each party in the three regions.

```
Solution.
\frac{1}{100}(\begin{array}{lll}{46}&{40}&{46}\\{12}&{12}&{10}\\{42}&{48}&{44}\end{array})(\begin{array}{l}{550000}\\{500000}\\{253000}\end{array})=(\begin{array}{l}{569380}\\{151300}\\{582320}\end{array})
Left gets 389 380, Center gets 151300 and Right gets 366 320.
```

