FORK1003 - Final test in linear algebra - solutions

August 18th, 2009

Problem 1. Compute
$$-2A + 5B$$
 when

$$A = \begin{pmatrix} 1 & 3 \\ -2 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 3 \\ 2 & 1 \end{pmatrix}.$$
Solution. $-2A + 5B = -2\begin{pmatrix} 1 & 3 \\ -2 & 1 \end{pmatrix} + 5\begin{pmatrix} 0 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 9 \\ 14 & 3 \end{pmatrix}$

Problem 2. Compute
$$AB$$
 and BA , if possible, for the following:
(1) $A = \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}$ and $B = \begin{pmatrix} -3 & 1 & 1 \end{pmatrix}$
(2) $A = \begin{pmatrix} 5 & -3 \\ 10 & 11 \end{pmatrix}$ and $B = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$
(3) $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} -1 & 2 \\ 3 & 2 \\ -1 & 2 \end{pmatrix}$

Solution. (1)

$$AB = \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix} \begin{pmatrix} -3 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 1 & 1 \\ 9 & -3 & -3 \\ -3 & 1 & 1 \end{pmatrix}$$

$$BA = \begin{pmatrix} -3 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix} = -5$$
(2)

$$AB \text{ is undefined}$$

$$BA \text{ is undefined}$$
(3)

$$AB = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 3 & 2 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -2 & 4 \\ 3 & 2 \\ -1 & 2 \end{pmatrix}$$

$$BA \text{ is not defined}$$

Problem 3. Compute the determinants(a)
$$\begin{vmatrix} 1 & 2 \\ 4 & 8 \end{vmatrix}$$
(b) $\begin{vmatrix} 2 & -13 \\ -2 & 12 \end{vmatrix}$

Solution. (a) $\begin{vmatrix} 1 & 2 \\ 4 & 8 \end{vmatrix} = 0$ (b) $\begin{vmatrix} 2 & -13 \\ -2 & 12 \end{vmatrix} = -2$ Problem 4. Write

$$5x_1 - 7x_2 = -2$$

$$7x_1 - 10x_2 = 1$$

as $A\mathbf{x} = \mathbf{b}$. Find A^{-1} and use this to solve the system of equations.

Solution.
$$A = \begin{pmatrix} 5 & -7 \\ 7 & -10 \end{pmatrix} \implies A^{-1} = \begin{pmatrix} 5 & -7 \\ 7 & -10 \end{pmatrix}^{-1} = \begin{pmatrix} 10 & -7 \\ 7 & -5 \end{pmatrix}$$
$$\mathbf{x} = A^{-1}\mathbf{b} = \begin{pmatrix} 10 & -7 \\ 7 & -5 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} -27 \\ -19 \end{pmatrix}$$

Problem 5. Compute the determinant of A by cofactor expansion along a suitable row and determine if the matrix is invertible. (a) $A = \begin{pmatrix} 2 & -1 & 2 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$ (b) $A = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & -2 \\ -1 & 0 & 0 & 1 \end{pmatrix}$

Solution. (a)

$$\begin{vmatrix} 2 & -1 & 2 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{vmatrix} = -2$$
(b)

$$\begin{vmatrix} 1 & -1 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & -2 \\ -1 & 0 & 0 & 1 \end{vmatrix} = 15$$

Problem 6. Write the following system of linear equations as $A\mathbf{x} = \mathbf{b}$ and use Cramers rule to find x_2 :

 $2x_1 - x_2 + 2x_3 = 0$ $x_1 - 2x_2 - x_3 = 3$ $x_1 + x_2 - x_3 = 0$

Solution.
$$A = \begin{pmatrix} 2 & -1 & 2 \\ 1 & -2 & -1 \\ 1 & 1 & -1 \end{pmatrix}, A_{\mathbf{b},2} = \begin{pmatrix} 2 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & 0 & -1 \end{pmatrix}$$
$$x_2 = \frac{\begin{vmatrix} 2 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & 0 & -1 \end{vmatrix}}{\begin{vmatrix} 2 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & 0 & -1 \end{vmatrix}} = \frac{-12}{12} = -1$$

Problem 7. Find the inverse of the matrix $A = \begin{pmatrix} 2 & -1 & 2 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$ if it exists.

	$\binom{2}{2}$	-1	2	-1	(0	1	0)
Solution.	1	0	0	=	0	0	-1
	$\int 0$	-1	0 /		$\frac{1}{2}$	-1	$-\frac{1}{2}$

Problem 8. Assume that

$$A = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 3 & -1 & 0 \\ 10 & 0 & -1 \end{array}\right)$$

.

Compute A^2 . Is A invertible? If so, find the inverse of A without computing cofactors.

Colution 12	$\begin{pmatrix} 1\\ 2 \end{pmatrix}$	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1\\ 2 \end{pmatrix}$	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$		$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\implies A^{-1} = A$
Solution. $A^2 =$	$\begin{pmatrix} 3\\10 \end{pmatrix}$	$-1 \\ 0$	$\begin{pmatrix} 0 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 3\\10 \end{pmatrix}$	$-1 \\ 0$	$\begin{bmatrix} 0 \\ -1 \end{bmatrix}$			$\frac{1}{0}$	$\begin{pmatrix} 0\\ 1 \end{pmatrix}$	
	(- /	(= -		- /		\ ~	•	- /	