FORK1003 - Final test in linear algebra - solutions

August 18th, 2009

Problem 1. Compute $-2 A+5 B$ when

$$
A=\left(\begin{array}{cc}
1 & 3 \\
-2 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
0 & 3 \\
2 & 1
\end{array}\right)
$$

Solution. $-2 A+5 B=-2\left(\begin{array}{cc}1 & 3 \\ -2 & 1\end{array}\right)+5\left(\begin{array}{ll}0 & 3 \\ 2 & 1\end{array}\right)=\left(\begin{array}{cc}-2 & 9 \\ 14 & 3\end{array}\right)$

Problem 2. Compute $A B$ and $B A$, if possible, for the following:
(1) $A=\left(\begin{array}{c}1 \\ -3 \\ 1\end{array}\right)$ and $B=\left(\begin{array}{ccc}-3 & 1 & 1\end{array}\right)$
(2) $A=\left(\begin{array}{cc}5 & -3 \\ 10 & 11\end{array}\right)$ and $B=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$
(3) $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}-1 & 2 \\ 3 & 2 \\ -1 & 2\end{array}\right)$

Solution. (1)
$A B=\left(\begin{array}{c}1 \\ -3 \\ 1\end{array}\right)\left(\begin{array}{lll}-3 & 1 & 1\end{array}\right)=\left(\begin{array}{ccc}-3 & 1 & 1 \\ 9 & -3 & -3 \\ -3 & 1 & 1\end{array}\right)$
$B A=\left(\begin{array}{lll}-3 & 1 & 1\end{array}\right)\left(\begin{array}{c}1 \\ -3 \\ 1\end{array}\right)=-5$
(2)
$A B$ is undefined
$B A$ is undefined
(3)
$A B=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{cc}-1 & 2 \\ 3 & 2 \\ -1 & 2\end{array}\right)=\left(\begin{array}{cc}-2 & 4 \\ 3 & 2 \\ -1 & 2\end{array}\right)$
$B A$ is not defined

Problem 3. Compute the determinants
(a) $\left|\begin{array}{ll}1 & 2 \\ 4 & 8\end{array}\right|$
(b) $\left|\begin{array}{cc}2 & -13 \\ -2 & 12\end{array}\right|$

Solution. (a)

$\left|\begin{array}{ll}1 & 2 \\ 4 & 8\end{array}\right|=0$
(b)
$\left|\begin{array}{cc}2 & -13 \\ -2 & 12\end{array}\right|=-2$

Problem 4. Write

$$
\begin{aligned}
5 x_{1}-7 x_{2} & =-2 \\
7 x_{1}-10 x_{2} & =1
\end{aligned}
$$

as $A \mathbf{x}=\mathbf{b}$. Find A^{-1} and use this to solve the system of equations.

Solution. $A=\left(\begin{array}{cc}5 & -7 \\ 7 & -10\end{array}\right) \Longrightarrow A^{-1}=\left(\begin{array}{cc}5 & -7 \\ 7 & -10\end{array}\right)^{-1}=\left(\begin{array}{cc}10 & -7 \\ 7 & -5\end{array}\right)$
$\mathbf{x}=A^{-1} \mathbf{b}=\left(\begin{array}{cc}10 & -7 \\ 7 & -5\end{array}\right)\binom{-2}{1}=\binom{-27}{-19}$

Problem 5. Compute the determinant of A by cofactor expansion along a suitable row and determine if the matrix is invertible.
(a) $A=\left(\begin{array}{ccc}2 & -1 & 2 \\ 1 & 0 & 0 \\ 0 & -1 & 0\end{array}\right)$
(b) $A=\left(\begin{array}{cccc}1 & -1 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & -2 \\ -1 & 0 & 0 & 1\end{array}\right)$

Solution. (a)
$\left\lvert\, \begin{array}{lll}2 & -1 & 2\end{array}\right.$
$\left|\begin{array}{ccc}2 & -1 & 2 \\ 1 & 0 & 0 \\ 0 & -1 & 0\end{array}\right|=-2$
(b)
$\left|\begin{array}{cccc}1 & -1 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & -2 \\ -1 & 0 & 0 & 1\end{array}\right|=15$

Problem 6. Write the following system of linear equations as $A \mathbf{x}=\mathbf{b}$ and use Cramers rule to find x_{2} :

$$
\begin{array}{r}
2 x_{1}-x_{2}+2 x_{3}=0 \\
x_{1}-2 x_{2}-x_{3}=3 \\
x_{1}+x_{2}-x_{3}=0
\end{array}
$$

Solution. $A=\left(\begin{array}{ccc}2 & -1 & 2 \\ 1 & -2 & -1 \\ 1 & 1 & -1\end{array}\right), A_{\mathbf{b}, 2}=\left(\begin{array}{ccc}2 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & 0 & -1\end{array}\right)$

$$
x_{2}=\frac{\left|\begin{array}{ccc}
2 & 0 & 2 \\
1 & 3 & -1 \\
1 & 0 & -1
\end{array}\right|}{\left|\begin{array}{ccc}
2 & -1 & 2 \\
1 & -2 & -1 \\
1 & 1 & -1
\end{array}\right|}=\frac{-12}{12}=-1
$$

Problem 7. Find the inverse of the matrix

$$
A=\left(\begin{array}{ccc}
2 & -1 & 2 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right)
$$

if it exists.

Solution. $\left(\begin{array}{ccc}2 & -1 & 2 \\ 1 & 0 & 0 \\ 0 & -1 & 0\end{array}\right)^{-1}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & -1 \\ \frac{1}{2} & -1 & -\frac{1}{2}\end{array}\right)$

Problem 8. Assume that

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
3 & -1 & 0 \\
10 & 0 & -1
\end{array}\right)
$$

Compute A^{2}. Is A invertible? If so, find the inverse of A without computing cofactors.

Solution. $A^{2}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 3 & -1 & 0 \\ 10 & 0 & -1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 3 & -1 & 0 \\ 10 & 0 & -1\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \Longrightarrow A^{-1}=A$

