FORK1003 Linear algebra Short review of Lecture 1

Eivind Eriksen

30. juli 2009

1.1 Matrices and Matrix Addition

Example

$$
A=\left(\begin{array}{ll}
2 & 1 \\
3 & 6
\end{array}\right) \quad B=\left(\begin{array}{ll}
3 & 2 \\
1 & 0 \\
6 & 5
\end{array}\right) \quad C=\left(\begin{array}{cc}
4 & -1 \\
2 & 0
\end{array}\right)
$$

1.1 Matrices and Matrix Addition

Example

$$
A=\left(\begin{array}{ll}
2 & 1 \\
3 & 6
\end{array}\right) \quad B=\left(\begin{array}{ll}
3 & 2 \\
1 & 0 \\
6 & 5
\end{array}\right) \quad C=\left(\begin{array}{cc}
4 & -1 \\
2 & 0
\end{array}\right)
$$

We can calculate the sum of A and C

$$
\begin{aligned}
A+C & =\left(\begin{array}{ll}
2 & 1 \\
3 & 6
\end{array}\right)+\left(\begin{array}{cc}
4 & -1 \\
2 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
2+4 & 1+(-1) \\
3+2 & 6+0
\end{array}\right)=\left(\begin{array}{ll}
6 & 0 \\
5 & 6
\end{array}\right),
\end{aligned}
$$

but the sum of A and B is not defined, since they do not have the same order.

1.1 Matrices and Matrix Addition

Example

If

$$
A=\left(\begin{array}{ll}
2 & 1 \\
3 & 6
\end{array}\right)
$$

we get that

$$
4 A=\left(\begin{array}{ll}
4 \cdot 2 & 4 \cdot 1 \\
4 \cdot 3 & 4 \cdot 6
\end{array}\right)=\left(\begin{array}{cc}
8 & 4 \\
12 & 24
\end{array}\right)
$$

1.1 Matrices and Matrix Addition

Definition

We will write 0 for any matrix consisting of only zeros.

1.1 Matrices and Matrix Addition

Definition

We will write 0 for any matrix consisting of only zeros.

Example

The following are examples of zero matrices:

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

1.1 Matrices and Matrix Addition

Definition

The square matrix of order $n \times n$ that have only 1 's on the diagonal and 0 's elsewhere, is called the identity matrix and is denoted by I or I_{n}.

1.1 Matrices and Matrix Addition

Definition

The square matrix of order $n \times n$ that have only 1 's on the diagonal and 0 's elsewhere, is called the identity matrix and is denoted by I or I_{n}.

Example

$$
I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
2 \times 2
\end{array}\right) \text { and } I_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

1.1 Matrices and Matrix Addition

Definition

The square matrix of order $n \times n$ that have only 1 's on the diagonal and 0 's elsewhere, is called the identity matrix and is denoted by I or I_{n}.

Example

$$
I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
2 \times 2
\end{array}\right) \text { and } I_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The following is not an identity matrix, since it is not a square matrix.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

1.1 Matrices and Matrix Addition

Definition

Let A be an $n \times m$ matrix. The transpose of A, denoted A^{T}, is the $m \times n$ matrix obtained form A by interchanging the rows and columns in A.

1.1 Matrices and Matrix Addition

Definition

Let A be an $n \times m$ matrix. The transpose of A, denoted A^{T}, is the $m \times n$ matrix obtained form A by interchanging the rows and columns in A.

Example

$$
A=\left(\begin{array}{lll}
1 & 3 & 5 \\
0 & 1 & 1 \\
2 & 0 & 1
\end{array}\right) \Longrightarrow A^{T}=\left(\begin{array}{lll}
1 & 0 & 2 \\
3 & 1 & 0 \\
5 & 1 & 1
\end{array}\right)
$$

1.1 Matrices and Matrix Addition

Proposition

Let A, B and C be matrices of the same size (order), and let r and s be scalars (numbers). Then:
(1) $A+B=B+A$
(2) $(A+B)+C=A+(B+C)$
(3) $A+0=A$
(9) $r(A+B)=r A+r B$
(3) $(r+s) A=r A+s A$
(6) $r(s A)=(r s) A$

1.2 Matrix Multiplication

Example

Let $A=\left(\begin{array}{cc}1 & 3 \\ -3 & 0 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ccc}2 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$. Compute $A B$.

1.2 Matrix Multiplication

Example

Let $A=\left(\begin{array}{cc}1 & 3 \\ -3 & 0 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ccc}2 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$. Compute $A B$.
Solution

$$
\begin{array}{c|c}
\left(\begin{array}{ccc}
2 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \\
\hline\left(\begin{array}{cc}
1 & 3 \\
-3 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ccc}
1 \cdot 2+3 \cdot 1 & * & * \\
* & * & * \\
* & * & *
\end{array}\right)
\end{array}
$$

1.2 Matrix Multiplication

Example

Let $A=\left(\begin{array}{cc}1 & 3 \\ -3 & 0 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ccc}2 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$. Compute $A B$.
Solution

$$
\begin{array}{c|c}
\left(\begin{array}{ccc}
2 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \\
\hline\left(\begin{array}{cc}
1 & 3 \\
-3 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ccc}
5 & 1 \cdot 0+3 \cdot 1 & * \\
* & * & * \\
* & * & *
\end{array}\right)
\end{array}
$$

1.2 Matrix Multiplication

Example

Let $A=\left(\begin{array}{cc}1 & 3 \\ -3 & 0 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ccc}2 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$. Compute $A B$.
Solution

$$
\begin{array}{c|c}
\left(\begin{array}{ccc}
2 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \\
\hline\left(\begin{array}{cc}
1 & 3 \\
-3 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ccc}
5 & 3 & 1 \\
-6 & 0 & -3 \\
1 & 1 & 0 \cdot 1+1 \cdot 0
\end{array}\right)
\end{array}
$$

1.2 Matrix Multiplication

Solution

$$
\begin{aligned}
& \left(\begin{array}{ccc}
2 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \\
\hline\left(\begin{array}{cc}
1 & 3 \\
-3 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ccc}
5 & 3 & 1 \\
-6 & 0 & -3 \\
1 & 1 & 0 \cdot 1+1 \cdot 0
\end{array}\right) \\
A B & =\left(\begin{array}{ccc}
5 & 3 & 1 \\
-6 & 0 & -3 \\
1 & 1 & 0
\end{array}\right) .
\end{aligned}
$$

Note the orders of the matrices:

$$
\underset{3 \times 2}{A} \underset{2 \times 3}{B}=\underset{3 \times 3}{A B} .
$$

1.2 Matrix Multiplication

Proposition

We have the following rules for matrix multiplication:
(1) $(A B) C=A(B C)$ (associative law)
(2) $A(B+C)=A B+A C$ (left distributive law)
(3) $(A+B) C=A C+B C$ (right distributive law)
(9) $I A=A I=A$
(0) $(A B)^{T}=B^{T} A^{T}$

