Lecture 2: Matrix Algebra and Determinants

Eivind Eriksen

August 7th, 2009

Contents

Reading 1
2.1. Vectors 1
2.2. More on Matrix Multiplication 1
2.3. Determinants 3
2.4. Homework 5

References 5

Reading. In this lecture we cover topics from Section 15.4, 15.5, 15.7 and 16.1 in [1].
2.1. Vectors. A matrix with only one row is called a row vector and a matrix with only one column is called a column vector. We refer to both types as vectors. These are typically denoted by small bold letters and not capital letters. If a vector consists of n entries it is called an n-vector.

We may represent 2 -vectors in a coordinate system.
Problem 1. Draw the vectors $\mathbf{a}=(1,4)$ and $\mathbf{b}=(4,1)$ in a coordinate system. Draw also $\mathbf{a}+\mathbf{b}$.
2.2. More on Matrix Multiplication. We will now see how to write a system of linear equations a matrix equation.

Example 1. Show that the system

$$
\begin{aligned}
& 3 x_{1}+4 x_{2}=5 \\
& 7 x_{1}-2 x_{2}=2
\end{aligned}
$$

of linear equations can be written as

$$
A \mathrm{x}=\mathrm{b}
$$

where

$$
A=\left(\begin{array}{cc}
3 & 4 \\
7 & -2
\end{array}\right), \mathbf{x}=\binom{x_{1}}{x_{2}} \text { and } \mathbf{b}=\binom{5}{2}
$$

Solution. We compute

$$
A \mathbf{x}=\left(\begin{array}{cc}
3 & 4 \\
7 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{3 x_{1}+4 x_{2}}{7 x_{1}-2 x_{2}}
$$

and we see that $A \mathbf{x}=\mathbf{b}$ if and only if $\binom{3 x_{1}+4 x_{2}}{7 x_{1}-2 x_{2}}=\binom{5}{2}$. This is the same as saying that $3 x_{1}+4 x_{2}=5$ and $7 x_{1}-2 x_{2}=2$.

The advantage of writing a system on matrix form is that this compact form may be used even on very large systems of equations.

Problem 2. Write the following system of equations as $A \mathbf{x}=\mathbf{b}$:

$$
\begin{array}{r}
x_{1}+2 x_{2}+x_{3}=4 \\
x_{1}+3 x_{2}+x_{3}=5 \\
2 x_{1}+5 x_{2}+3 x_{3}=1
\end{array}
$$

Matrix notation can also be used to find the solution of a system of linear equations.
Problem 3. Let

$$
A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & 3 & 1 \\
2 & 5 & 3
\end{array}\right) \text { and } S=\left(\begin{array}{ccc}
4 & -1 & -1 \\
-1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right)
$$

Compute $(S A) \mathbf{x}$ and use this to solve the system of linear equations in the previous problem.
This suggests the following definition.
Definition 2. Let A be any matrix. A matrix S is called an inverse of A if

$$
A S=S A=I
$$

For a 2×2 matrix it is possible to give a formula for the inverse.
Problem 4. Let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

and assume that $a d-b c \neq 0$. Show that

$$
\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

is an inverse of A.
An important fact is that the inverse matrix is unique.

Proposition 3. Let A be an $n \times n$ matrix. If A has an inverse, then it is unique.

Proof. Assume that both X and Y are inverses of A. Then

$$
Y=I Y=(X A) Y=X(A Y)=X I=X
$$

Since the inverse of a matrix A is unique (if it exists) it is denoted by A^{-1}.
Problem 5. Find the inverse of

$$
\begin{gathered}
A=\left(\begin{array}{cc}
3 & 4 \\
7 & -2
\end{array}\right) \\
3 x_{1}+4 x_{2}=5 \\
7 x_{1}-2 x_{2}=2
\end{gathered}
$$

and use this to solve
2.3. Determinants. We have already encountered determinants of 2×2 matrices.

Definition 4. The determinant of a 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is written

$$
|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

and is defined by

$$
|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c .
$$

Consider the following example.
Example 5. Compute the determinants
(a) $\left|\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right|$
(b) $\left|\begin{array}{ll}2 & 3 \\ 2 & 1\end{array}\right|$
(c) $\left\lvert\, \begin{array}{ll}a+b & a-b \\ a-b & a+b\end{array}\right.$

Solution.
(a) $\left|\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right|=1 \cdot 3-4 \cdot 2=-5$
(b) $\left|\begin{array}{ll}2 & 3 \\ 2 & 1\end{array}\right|=2 \cdot 1-2 \cdot 3=-4$
(c) $\left|\begin{array}{cc}a+b & a-b \\ a-b & a+b\end{array}\right|=(a+b)^{2}-(a-b)^{2}=4 a b$

We shall later see how to compute the inverse of a 3×3 matrix by computing its so-called cofactors.

Definition 6. Let A be an 3×3 matrix. The cofactor $A_{i j}$ is $(-1)^{i+j}$ times the determinant obtained by deleting row i and column j in A.

This definition will be generalized later.

Example 7. Let

$$
A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
2 & 0 & 1
\end{array}\right)
$$

Compute the cofactor A_{12}.

Solution.

$$
A_{12}=(-1)^{1+2}\left|\begin{array}{cc}
0 & -1 \\
2 & 1
\end{array}\right|=(-1)(0 \cdot 1-2 \cdot(-1))=-2
$$

Problem 6. Compute some more cofactors of the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
2 & 0 & 1
\end{array}\right)
$$

The matrix

$$
\left(\begin{array}{ccc}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right)
$$

is called the cofactor matrix of A and denoted by $\operatorname{cof}(A)$. If $A=\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & 1 & -1 \\ 2 & 0 & 1\end{array}\right)$ we compute that

$$
\operatorname{cof}(A)=\left(\begin{array}{ccc}
1 & -2 & -2 \\
0 & -3 & 0 \\
-2 & 1 & 1
\end{array}\right)
$$

Definition 8. The transpose of the cofactor matrix is called the adjoint matrix. In symbols

$$
\operatorname{adj}(A)=\operatorname{cof}(A)^{T} .
$$

The adjoint matrix has useful properties.
Problem 7. Let

$$
A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
2 & 0 & 1
\end{array}\right)
$$

Find $\operatorname{adj}(A)$ and $\operatorname{compute} A \operatorname{adj}(A)$ and $\operatorname{adj}(A) A$.
2.4. Homework. You should solve the following problems before the next lecture.

Problem 8. Draw the vectors $\mathbf{a}=(-1,3)$ and $\mathbf{b}=(4,2)$ in a coordinate system. Draw also $\mathbf{a}+\mathbf{b}$.

Problem 9. Compute the determinants
(a) $\left|\begin{array}{cc}2 & 3 \\ 4 & -1\end{array}\right|$
(b) $\left|\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right|$
(c) $\left|\begin{array}{cc}a-b & a \\ a & a+b\end{array}\right|$

Problem 10. Write

$$
\begin{array}{r}
x_{1}+x_{2}=1 \\
x_{1}-2 x_{2}=0
\end{array}
$$

as

$$
A \mathbf{x}=\mathbf{b}
$$

Find A^{-1} and use this to solve the system of equations.

Problem 11. Write the following system of equations as $A \mathbf{x}=\mathbf{b}$:

$$
\begin{aligned}
x_{1}+4 x_{2}+x_{3} & =0 \\
x_{1}+5 x_{2}+x_{3} & =1 \\
2 x_{1}+9 x_{2}+3 x_{3} & =1
\end{aligned}
$$

Find the adjoint matrix $\operatorname{adj}(A) . \operatorname{Compute} \operatorname{adj}(A) A$ and use this to solve the system of linear equation.

References

1. Knut Sydsæter and Peter J. Hammond, Essential mathematics for economic analysis, Prentice Hall, Harlow, 2008.
