Problem Sheet 8 DRE 7007 Mathematics

BI Norwegian Business School

Problems

1. Solve the optimal control problem

$$\max \int_0^2 (3 - x^2 - u^2) \, \mathrm{d}t$$

subject to $\dot{x} = u$, x(0) = 1, x(2) = 4 when the control region $U = \mathbb{R}$.

2. Solve the optimal control problem

$$\max \int_0^T \left(x - \frac{1}{2}u^2\right) dt$$

subject to $\dot{x}=u,\ x(0)=x_0$ when the control region $U=\mathbb{R}$. Use the optimal pair (x^*,u^*) to compute the optimal value function

$$V(x_0, T) = \int_0^T (x^* - \frac{1}{2}(u^*)^2) dt$$

Keep answers as short and to the point as possible. Answers must be justified.