Exercise Problems

Problem 1.

Let $S=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$, and let $T=\left\{(x, y) \in \mathbb{R}^{2}: x y=1\right\}$. Sketch the regions S and T in the plane, and find the boundaries ∂S and ∂T. For each of the regions, determine if it is open, closed, bounded, compact.

Problem 2.

We consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}x \sin (1 / x), & x \neq 0 \\ 0, & x=0\end{cases}
$$

Show that f is continuous at $x=0$. Is f differentiable at $x=0$? Is f a C^{1} function? What about the function $g: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
g(x)= \begin{cases}x^{2} \sin (1 / x), & x \neq 0 \\ 0, & x=0\end{cases}
$$

Problem 3.

We consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

Show that f is a C^{1} function, and compute its Hessian matrix. Is it a C^{2} function?

