Exercise Problems

Problem 1.

Consider the sequence given by $x_{n}=\frac{n^{2}+1}{n}$. Does the sequence have a limit? Is it bounded?

Problem 2.

Let \mathbb{R}^{n} be the n-dimensional Euclidean space with the Euclidean norm. Show that the Cauchy-Schwarz inequality implies that the triangle inequality

$$
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|
$$

holds for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.

Problem 3.

Let $I=[0,1]$, and consider the vector space $C(I, \mathbb{R})$ of continuous functions on I. Show that

$$
f \cdot g=\int_{0}^{1} f(t) g(t) \mathrm{d} t
$$

defines an inner product on $C(I, \mathbb{R})$, and compute $f \cdot g$ when $f(t)=t^{2}$ and $g(t)=t^{3}$. What is $d(f, g)$ when d is the metric induced by this inner product?

