Exercise Problems

Problem 1.

Let A be the 3×4 matrix with parameter a given by

$$
A=\left(\begin{array}{cccc}
1 & 1 & 2 & 1 \\
3 & 2 & 1 & 0 \\
2 & 5 & a & 11
\end{array}\right)
$$

Show that $\mathbf{v}=(2,-3,0,1)$ is in the vector space $V=\operatorname{Null}(A)$, and find a base of V containing \mathbf{v}.

Problem 2.

Compute all eigenvalues and eigenvectors for the following $n \times n$ matrices, and find an orthonormal base of \mathbb{R}^{n} consisting of eigenvectors when this is possible:
a) $A=\left(\begin{array}{ll}2 & -3 \\ 7 & -8\end{array}\right)$
b) $A=\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)$
c) $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$

Problem 3.

Determine if the matrices are positive (semi)definite, negative (semi)definite or indefinite:
a) $\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 4 & 5 \\ 0 & 5 & 8\end{array}\right)$
b) $\left(\begin{array}{lll}1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & a\end{array}\right)$
c) $\left(\begin{array}{cccc}1 & -2 & -1 & 1 \\ -2 & 1 & 1 & 2 \\ -1 & 1 & -1 & -3 \\ 1 & 2 & -3 & 0\end{array}\right)$

Problem 4.

Write the following dynamical system (in discrete time) in matrix form:

$$
\begin{aligned}
x_{t+1} & =0.75 x_{t}+0.35 y_{t} \\
y_{t+1} & =0.25 x_{t}+0.65 y_{t}
\end{aligned}
$$

We assume that the initial state $\left(x_{0}, y_{0}\right)$ satisfies $x_{0}+y_{0}=1$. Does the system tend towards an equlibrium in the long run (as $t \rightarrow \infty)$? If so, what is the equilibrium state?

