Question 1.

We consider the matrix A given by

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

- (a) Find a base of Null(A I) and Null $((A I)^2)$. Which of the vectors are eigenvectors of A?
- (b) Determine whether A is diagonalizable.
- (c) A vector \mathbf{v} is called a *generalized eigenvector* for A if $(A \lambda I)^n \cdot \mathbf{v} = \mathbf{0}$ for some real number λ and some integer $n \geq 1$. Explain that any eigenvector for A is a generalized eigenvector, and find 3 generalized eigenvectors of A that are linearly independent.
- (d) Determine the definiteness of the quadratic form $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.
- (e) Solve the optimization problem min $q(\mathbf{x})$ when x + y + z = 1.

Question 2.

Let $V = C(I, \mathbb{R})$ be the vector space of continuous functions on the unit interval I = [0, 1], equipped with the sup-norm, and define the function $f_n(x) = \sqrt[n]{x}$ for all positive integers $n \ge 1$.

- (a) Compute $d(f_2, f_3)$ and $d(f_3, f_4)$.
- (b) Show that if (f_n) converges to f in V, then $f_n(x)$ converges to f(x) for all $x \in I$.
- (c) Is (f_n) a Cauchy sequence?
- (d) Does (f_n) have a convergent subsequence?

Question 3.

Solve the optimal control problem

$$\max \sum_{t=0}^{5} \left(1 + 3x_t^2 - 2u_t^2 \right) \quad \text{when} \quad \begin{cases} x_0 = 4\\ x_{t+1} = x_t + u_t\\ u_t \in U \end{cases}$$

with control region U = [0, 1].

Question 4.

Solve the optimal control problem

$$\max \int_0^2 10 - (y - u)^2 e^{-t} dt \quad \text{when} \quad \begin{cases} y' = y - u/2\\ y(0) = 0\\ y(2) = 6e \end{cases}$$