Exam Exercise Problems in DRE 7017 Mathematics, Ph.D.
 Date September 2022

Question 1.

We consider the matrix A given by

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 0 \\
0 & 1 & 2
\end{array}\right)
$$

(a) Find a base of $\operatorname{Null}(A-I)$ and $\operatorname{Null}\left((A-I)^{2}\right)$. Which of the vectors are eigenvectors of A ?
(b) Determine whether A is diagonalizable.
(c) A vector \mathbf{v} is called a generalized eigenvector for A if $(A-\lambda I)^{n} \cdot \mathbf{v}=\mathbf{0}$ for some real number λ and some integer $n \geq 1$. Explain that any eigenvector for A is a generalized eigenvector, and find 3 generalized eigenvectors of A that are linearly independent.
(d) Determine the definiteness of the quadratic form $q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$.
(e) Solve the optimization problem $\min q(\mathbf{x})$ when $x+y+z=1$.

Question 2.

Let $V=\mathrm{C}(I, \mathbb{R})$ be the vector space of continuous functions on the unit interval $I=[0,1]$, equipped with the sup-norm, and define the function $f_{n}(x)=\sqrt[n]{x}$ for all positive integers $n \geq 1$.
(a) Compute $d\left(f_{2}, f_{3}\right)$ and $d\left(f_{3}, f_{4}\right)$.
(b) Show that if $\left(f_{n}\right)$ converges to f in V, then $f_{n}(x)$ converges to $f(x)$ for all $x \in I$.
(c) Is $\left(f_{n}\right)$ a Cauchy sequence?
(d) Does $\left(f_{n}\right)$ have a convergent subsequence?

Question 3.

Solve the optimal control problem

$$
\max \sum_{t=0}^{5}\left(1+3 x_{t}^{2}-2 u_{t}^{2}\right) \quad \text { when } \quad\left\{\begin{array}{l}
x_{0}=4 \\
x_{t+1}=x_{t}+u_{t} \\
u_{t} \in U
\end{array}\right.
$$

with control region $U=[0,1]$.

Question 4.

Solve the optimal control problem

$$
\max \int_{0}^{2} 10-(y-u)^{2} e^{-t} \mathrm{~d} t \quad \text { when } \quad\left\{\begin{array}{l}
y^{\prime}=y-u / 2 \\
y(0)=0 \\
y(2)=6 e
\end{array}\right.
$$

