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Chapter 1
Linear Systems

1.1 Linear Equations

A linear equation in the variables x1,x2, . . . ,xn is an equation of the form

a1x1 +a2x2 +a3x3 + · · ·+anxn = b

where a1,a2,a3, . . . ,an and b are fixed numbers. These fixed numbers are called
parameters. Typical linear equations are

x1 +2x2 = 4 and 7x1 +3x2− x3 = 0

The equations are called linear because their graphs are straight lines (when it is
an equation in two variables) and planes (when it is an equation in three variables).
Typical equations that are not linear are

x2
1− x1x2 = 1 and lnx1−

√
x2 = 0

The key feature of a linear equations is that each term of the equation is either a
constant term or a term of order one (that is, a constant coefficient times one of the
variables).

There are several reasons to study linear equations. First, the linear equations are
the simplest equations we have. The study of linear equations requires no calculus,
and builds on techniques from school mathematics, such as the solution of two linear
equations in two variables via substitution:

Example 1.1. We solve the following linear equations using substitution:

x + y = 4
x − y = 2
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First, we solve the first equation for y. Then we substitute y = 4− x into the
second equation and solve for x.

x + y = 4
x − y = 2 ⇒ y = 4− x ⇒ x− (4− x) = 2 ⇒ x = 3

The solution is x = 3 and y = 4− x = 1.

The real world is often non-linear and can in many cases best be described with
more complicated, non-linear equations. But even in these cases, linear equations
can be very useful: Using calculus, we may replace non-linear equations with linear
approximations. A well-known and typical example is when we use the derivative
of a function in one variable to approximate the graph of the function (a curve) with
its tangent line at a given point. The tangent line is the best linear approximation of
the function near that point.

Of course, the tangent line is not quite the same as the curve, especially far away
from the point we used to construct the tangent. Nevertheless, linear approximations
can very often be used successfully. Few would disagree that the earth is curved, and
has the shape of a sphere (more or less). But it still makes sense to assume that it is
flat when it comes to constructing buildings, and even cities.
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1.2 Linear Systems

A linear system in the variables x1,x2, . . . ,xn is a collection of one or more linear
equations in these variables. The general form of a linear system with m equations
in n variables is

a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2

...
...

...
...

am1x1 + am2x2 + . . . + amnxn = bm

where a11,a12, . . . ,amn and b1,b2, . . . ,bm are fixed numbers called parameters. A
linear system with m equations and n variables is called an m×n linear system.

Example 1.2. A company in the US earns before-tax profits of $100,000. It has
agreed to contribute 10% of its after-tax profits to a charity. It must pay state
tax of 5% of its profit (after the donation) and a federal tax of 40% of its profit
(after the donation and state taxes are paid). How much will the company pay
in state and federal taxes, and how much will it donate?

Let S and F denote the state and federal taxes, and let C be the charity
donation. The state tax is 5% of profits net of the donation, hence

S = 0.05(100,000−C) ⇒ S+0.05C = 5,000

The federal tax is 40% of profits net of the donation and state tax, so

F = 0.40(100,000−C−S) ⇒ 0.40S+F +0.40C = 40,000

Since the donation is 10% of after-tax profits, we must have

C = 0.10(100,000−S−F) ⇒ 0.10S+0.10F +C = 10,000

This gives the following linear system:

S + 0.05C = 5,000
0.40S + F + 0.40C = 40,000
0.10S + 0.10F + C = 10,000

Note that when we wrote down this linear system, we chose an order of the
variables, and then organized all the equations according to that order.

We remark that when the variables and their order is given, a linear system can
be completely described by a rectangular table of numbers, called a matrix. The
coefficient matrix of a linear system is the matrix consisting of all coefficients in
front of the variables, and is often denoted A. The augmented matrix of the linear
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system is a matrix that contains the entries in the coefficient matrix, extended with
the constants on the right side of each equation, and it is often denoted Â. The linear
system

S + 0.05C = 5,000
0.40S + F + 0.40C = 40,000
0.10S + 0.10F + C = 10,000

of Example 1.2 has coefficient matrix A and augmented matrix Â given by

A =

 1 0 0.05
0.40 1 0.40
0.10 0.10 1

 and Â =

 1 0 0.05 5,000
0.40 1 0.40 40,000
0.10 0.10 1 10,000


The augmented matrix is a compact notation that allows us to write down all the
parameters of a linear system in a convenient way.

1.3 Solutions of Linear Systems

Let us consider the general m×n linear system in the variables x1,x2, . . . ,xn, which
is of the form

a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2

...
...

...
...

am1x1 + am2x2 + . . . + amnxn = bm

A solution of this linear system is an n-tuple of numbers (s1,s2, . . . ,sn) such that
x1 = s1,x2 = s2, . . . ,xn = sn solves all m equations simultaneously.

For instance, the linear system in Example 1.1 has the solution (x,y) = (3,1)
since x = 3 and y = 1 solves both equations of the linear system

x + y = 4
x − y = 2

In fact, both sides of the first equation evaluate to 4 and both sides of the second
equation evaluate to 2 when we substitute x = 3 and y = 1. Another example is the
linear system of Example 1.2, given by

S + 0.05C = 5,000
0.40S + F + 0.40C = 40,000
0.10S + 0.10F + C = 10,000

We have not solved this linear system yet. A number of questions come to mind
when we are faced with an unsolved linear system such as this one:

• Does the linear system have solutions?
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• If so, how many solutions are there?
• How do we find these solutions?

The first two questions hint at the fact that not all linear systems have a unique
solution. Let us consider the general 2×2 linear system

a11x + a12y = b1
a21x + a22y = b2

to illustrate this. Each equation has a graph that is a straight line in the plane, and
the intersection points of the two lines are the solutions of the linear system. There
are three possible types of configurations:

• When the two lines are not parallel, there is a unique intersection point and a
unique solution of the linear system.

• When the two lines are parallel and different, there are no intersection points and
no solutions of the linear system.

• When the two lines are parallel and coincide, the intersection points are all the
points on the line, and there are infinitely many solutions of the linear system.

In other words, if there are at least two solutions, then there must be infinitely many.

When you move from a 2× 2 linear system to a general m× n linear system,
the graphical picture is very different (if you can imagine pictures in n-dimensional
space at all). However, the same threefold nature of solutions persists:

Theorem 1.1. Any linear system has either no solutions, a unique solution or in-
finitely many solutions.

Concerning the question of how to find the solutions of a linear system, there
are a number of different approaches. The most commonly used methods can be
characterized as substitution methods, elimination methods, and matrix methods.

When we use substitution to solve an m× n system, we first solve one of the
equations for one of the variables — let us say we solve the first equation for xn,
so that xn is expressed in terms of the other n−1 variables. Then we substitute this
expression for xn into the remaining m−1 equations. The result is a reduction of the
original m×n linear system to a new (m−1)× (n−1) linear system — a system of
m−1 equations in the n−1 variables x1,x2, . . . ,xn−1. We continue with this kind of
reduction until we have a system of a single equation that we can solve.
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Example 1.3. We use substitution to solve the 3×3 linear system given by

S + 0.05C = 5,000
0.40S + F + 0.40C = 40,000
0.10S + 0.10F + C = 10,000

We first solve the first equation for S (since F is not present in this equation
and the coefficient of S is 1, this gives easier calculations) and get

S = 5000−0.05C

Then we substitute the right hand side expression for S in the second and third
equation. We get a 2×2 linear system

0.01F + 0.995C = 9,500
F + 0.38C = 38,000

The next step is to solve the second equation of the new system for F (again,
this gives the easiest calculations since the term with F in the second equation
has coefficient 1) and get

F = 38,000−0.38C

Then we substitute the right hand side expression for F in the first equation of
the new linear system. We get

0.01(38,000−0.38C)+0.995C = 9,500 ⇒ 0.957C = 5,700

This gives the solution C = 5,956. Then we substitute this value into the equa-
tion solved for F , and get F = 35,737. Finally, we substitute both these values
into the equation solved for S, and get S = 4,702. The solution of the linear
system is therefore C = 5,956, S= 4,702, F = 35,737 (rounded to the nearest
dollar).

Although it is possible to use substitution to solve any linear system, it turns out
that elimination methods are better suited for theoretical analysis than substitution
methods. Elimination is the subject of the next chapter.

Problems

1.1. Net cost of charity donation
What would the state and federal tax be for the company in Example 1.2 if no
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charity donation was made? Use this to find the net cost for the company of the
charity contribution of $5,956.

1.2. From linear system to augmented matrix
Write down the coefficient matrix and the augmented matrix of the following linear
systems:

a)
2x + 5y = 6
3x − 7y = 4 b)

x + y − z = 0
x − y + z = 2
x − 2y + 4z = 3

1.3. From augmented matrix to linear system
Write down the linear system in the variables x,y,z with augmented matrix1 2 0 4

2 −3 1 0
7 4 1 3


1.4. Solution by substitution
Use substitution to solve the linear system

x + y + z = 1
x − y + z = 4
x + 2y + 4z = 7

1.5. Variation of parameters by substitution
For what values of h does the following linear system have solutions?

x + y + z = 1
x − y + z = 4
x + 2y + z = h





Chapter 2
Gaussian Elimination

2.1 Elimination

When we solve a linear system using elimination, we first replace the given linear
system with a sequence of simpler linear systems by eliminating variables, making
sure to only use allowed operations in each step (that is, operations that preserve the
solutions of the linear system).

Let us start by a simple example of elimination, of the type that should be familiar
from school mathematics:

Example 2.1. We use elimination to solve the 2×2 linear system given by

x + y = 4
x − y = 2

We eliminate x by multiplying the last equation by −1 and then adding the
two equations:

x + y = 4
x − y = 2 ⇒ x + y = 4

−x + y = −2 ⇒ x + y = 4
2y = 2

Notice that we kept the first equation as part of the system. When the system
is reduced to the simple form where x is eliminated from the second equation,
we can find the solutions by a method called back substitution: We first solve
the last equation for y;

2y = 6 ⇒ y = 3

Then we substitute y = 3 in the first equation and solve for x

x+3 = 4 ⇒ x = 1

9
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Notice that when we use elimination, we work with the entire linear system and
not just one equation at the time. It is customary to use the augmented matrix to
represent the linear system at each step, so that the notation is more compact and
easier to work with:(

1 1 4
1 −1 2

)
⇒

(
1 1 4
−1 1 −2

)
⇒

(
1 1 4
0 2 2

)

2.2 Elementary row operations

The rows of the augmented matrix corresponds to the equations of the linear system,
and to perform row operations on the matrix (that is, operations on the rows of the
matrix) corresponds to performing operations on the equations of the system. The
following row operations are called elementary row operations:

• to interchange two rows of the matrix
• to change a row by adding to it a multiple of another row
• to multiply each element in a row by the same non-zero number

We remark that these row operations preserve the solutions of the linear system. In
fact, these row operations corresponds to switching two equations, to add a multiple
of one equation to another equation, and to multiply an equation with a non-zero
number. We say that two linear systems are row equivalent if you can get from one
to the other using elementary row operations.

Our aim is to use elementary row operations to obtain a new and simpler form of
the linear system — a linear system that is so simple that it can easily be solved by
back substitution. Since elementary row operations preserve the solutions of linear
systems, we can find the solutions of the given linear system using this process.

Notice that in Example 2.1, we used two elementary row operations to eliminate
the variable x from the second equation. In fact, we could have combined the two
operations into one elementary row operation: We replaced the second row with the
sum of the second row and (−1) times the first row. With symbols, the elementary
row operation was

R2← R2 +(−1)R1

It was the presence of x in the first equation that allowed us to eliminate x from the
second equation. Here is another example, with three variables:

Example 2.2. We use elementary row operations to simplify the 3× 3 linear
system given by

S + 0.05C = 5,000
0.40S + F + 0.40C = 40,000
0.10S + 0.10F + C = 10,000

⇒

 1 0 0.05 5,000
0.40 1 0.40 40,000
0.10 0.10 1 10,000


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In the first step, we use the presence of the variable C in the first equation to
eliminate C from the second and third equation by means of two elementary
row operations. In the second step, we use the presence of S in the second
equation of the new system to eliminate S from the third equation: 1 0 0.05 5,000

0.40 1 0.40 40,000
0.10 0.10 1 10,000

 R2← R2 +(−0.40)R1
R3← R3 +(−0.10)R1

⇒

1 0 0.05 5,000
0 1 0.38 38,000
0 0.10 0.995 9,500


R3← R3 +(−0.10)R2

⇒

1 0 0.05 5,000
0 1 0.38 38,000
0 0 0.957 5,700



The coefficients −0.40, −0.10 and −0.10 were chosen in a such a way that
the correct variables were eliminated.

Finally, we use back substitution to solve the simplified system (that is, we
use the the last augmented matrix): The last equation is

0.957C = 5,700 ⇒ C = 5,956

Then we substitute this value for C in the second equation, and get

F +0.38(5,956) = 38,000 ⇒ F = 35,737

Finally, we substitute the values for F and C into the first equation, and find

S+0.05(5,956) = 5,000 ⇒ S = 4,702

This gives the solution S = 4,702, F = 35,737, C = 5,956 (rounded to the
nearest dollar).

2.3 Echelon and reduced echelon forms

How do we know when to stop the process of elementary row operations? In other
words, what are the key features of an augmented matrix where as many variables as
possible have been eliminated? To answer this question, we introduce some useful
concepts for matrices.
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The first non-zero entry in a row of a matrix is called a pivot. Hence each row will
have one pivot, unless the row is a row of zeros. We say that a matrix has echelon
form if all entries under a pivot is zero. Typical matrices on echelon form are

 1 2 4 2
0 7 −1 5
0 0 3 −1

 ,


1 2 4 7 10
0 0 3 3 −6
0 0 0 4 −1
0 0 0 0 0


We have marked each pivot with a box. Notice that in Example 2.1-2.2, we stopped
the process of elementary row operations once we had reached an echelon form.

A matrix has reduced echelon form when all pivots are 1, and all entries above
and below a pivot are zero. The matrices given above are on echelon form, but not
reduced echelon form. Typical examples of matrices on reduced echelon form are

 1 0 0 2
0 1 0 5
0 0 1 −1

 ,


1 2 0 0 10
0 0 1 0 −6
0 0 0 1 −1
0 0 0 0 0


Notice the entries in the columns without pivots.

Proposition 2.1. Any matrix is row-equivalent to a matrix on echelon form, but this
echelon form is not unique, in general. Any matrix is row-equivalent to a unique
reduced echelon form.

Hence, starting from a given matrix, one might end up with several different
echelon forms depending on the specific row operations that are used. However,
the positions where the pivots end up are always the same, and are called the pivot
positions of the matrix.

2.4 Gaussian elimination

Gaussian elimination is an efficient method for solving any linear system using
systematic elimination of variables. It can be described in the following way:

• Write down the augmented matrix of the linear system.
• Use elementary row operations to reduced the matrix to an echelon form.
• Solve the linear system of the echelon form using back substitution.

Gauss-Jordan elimination is a variation of Gaussian elimination. The difference is
that the elementary row operations in a Gauss-Jordan elimination continue until we
reach the reduced echelon form of the matrix. This means a few extra row opera-
tions, but easier calculations in the final step since back substitution is now longer
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needed. There are also some theoretical advantages of Gauss-Jordan elimination
since the reduced echelon form is unique.

Example 2.3. We use Gauss-Jordan elimination to solve the 3× 3 linear sys-
tem given by

S + 0.05C = 5,000
0.40S + F + 0.40C = 40,000
0.10S + 0.10F + C = 10,000

⇒

 1 0 0.05 5,000
0.40 1 0.40 40,000
0.10 0.10 1 10,000


We start with the elementary row operations from Example 2.2, but continue
with elementary row operations until we reach a reduced echelon form: 1 0 0.05 5,000

0.40 1 0.40 40,000
0.10 0.10 1 10,000

 R2← R2 +(−0.40)R1
R3← R3 +(−0.10)R1

⇒

1 0 0.05 5,000
0 1 0.38 38,000
0 0.10 0.995 9,500


R3← R3 +(−0.10)R2

⇒

1 0 0.05 5,000
0 1 0.38 38,000
0 0 0.957 5,700


R3← R3 · (1/0.957)

⇒

1 0 0.05 5,000
0 1 0.38 38,000
0 0 1 5,956

 R1← R1 +(−0.05)R3
R2← R2 +(−0.38)R3

⇒

1 0 0 4,702
0 1 0 35,737
0 0 1 5,956


We have found the reduced echelon form of the linear system, and can read
off the solution of the system directly: S = 4,702 F = 35,737, C = 5,956.

2.5 Linear systems with no solutions

We say that a system is consistent if it has at least one solution, and inconsistent if it
has no solutions. How do we recognize an inconsistent linear system when we use
Gaussian elimination?

Proposition 2.2. A linear system is inconsistent if and only if there is a pivot posi-
tion in the last column of the augmented matrix.
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Example 2.4. Let us consider the linear system given by

x − y + z = 4
3x + 2y − z = 7
−x − 4y + 3z = 2

⇒

 1 −1 1 4
3 2 −1 7
−1 −4 3 2


We use Gaussian elimination to simplify the augmented matrix: 1 −1 1 4

3 2 −1 7
−1 −4 3 2

 R2← R2 +(−3)R1
R3← R3 +(1)R1

⇒

1 −1 1 4
0 5 −4 −5
0 −5 4 6


R3← R3 +(1)R2

⇒

1 −1 1 4
0 5 −4 −5
0 0 0 1


The matrix has now echelon form, and there is a pivot in the last column.
Therefore, the linear system has no solutions. In fact, the last equation of the
linear system corresponding to the echelon form is

0x+0y+0z = 1

which clearly has no solutions.

2.6 Linear systems with many solutions

We know that some linear systems have (infinitely) many solutions. How do we
recognize a linear system with infinitely many solutions when we use Gaussian
elimination, and how do we find and describe the solutions?

Proposition 2.3. A linear system has infinitely many solutions if and only if there is
no pivot position in the last column of the augmented matrix, and there is at least
one more column without a pivot position.

In fact, when the last column (to the right of the vertical line) is not a pivot
column, then the linear system is consistent and it is very useful to look at the
pivot position in the remaining columns (to the left of the vertical line). Each of
these columns corresponds to a variable. A variable is called a basic variable if it
corresponds to a pivot column, and a free variable if it corresponds to a column
without a pivot position.
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It is always possible to express each basic variable in terms of the free variables,
and it is easiest to do this using the reduced echelon form of the linear system. We
say that there are d degrees of freedom when there are d free variables. If there is at
least one degree of freedom, then there are infinitely many solutions.

Example 2.5. Let us consider the linear system given by

x + 2y + 3z = 1
3x + 2y + z = 1 ⇒

(
1 2 3 1
3 2 1 1

)
We use Gaussian elimination to simplify the augmented matrix:(

1 2 3 1
3 2 1 1

)
R2← R2 +(−3)R1

⇒
(

1 2 3 1
0 −4 −8 −2

)
This is a matrix on echelon form, and the pivot columns are the first two
columns. Hence the linear system has infinitely many solutions. In fact, the
system has one degree of freedom, since x and y are basic variables while
z is a free variable. To express x and y in terms of z, we continue with row
operations until we find the reduced echelon form:(

1 2 3 1
0 −4 −8 −2

)
R2← R2 · (−1/4)

⇒
(

1 2 3 1
0 1 2 0.5

)
R1← R1 +(−2)R2

⇒
(

1 0 −1 0
0 1 2 0.5

)
We use the reduced echelon form to express the basic variables x and y in
terms of the free variable z:

x − z = 0
y + 2z = 0.5 ⇒ x = z

y = 0.5−2z

Notice that there is no single solution for this system. In fact, for any value of
the free variable z, the equations above determine a unique value for the basic
variables x and y. For instance, z = 2 gives the solution

x = 2, y =−3.5, z = 2

Since there are infinitely many choices for the free variable z, there are in-
finitely many solutions of the linear system.
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Problems

2.1. Gaussian elimination I
Solve the following linear systems by Gaussian elimination:

a)
x + y + z = 1
x − y + z = 4
x + 2y + 4z = 7

b)
2x + 2y − z = 2
x + y + z = −2

2x + 4y − 3z = 0

2.2. Gauss-Jordan elimination
Solve the following linear system by Gauss-Jordan elimination:

x + y + z = 1
x − y + z = 4
x + 2y + 4z = 7

2.3. Gaussian elimination II
Solve the following linear systems by Gaussian elimination:

a)
−4x + 6y + 4z = 4

2x − y + z = 1 b)
6x + y = 7
3x + y = 4
−6x − 2y = 1

2.4. Variation of parameters
Discuss the number of solutions of the linear system

x + 2y + 3z = 1
−x + ay − 21z = 2
3x + 7y + az = b

for all values of the parameters a and b.

2.5. Pivot positions
Find the pivot positions of the following matrix: 1 3 4 1 7

3 2 1 0 7
−1 3 2 4 9


2.6. Basic and free variables
Show that the following linear system has infinitely many solutions, and determine
the number of degrees of freedom:

x + 6y − 7z + 3w = 1
x + 9y − 6z + 4w = 2
x + 3y − 8z + 4w = 5

Find free variables and express the basic variables in terms of the free ones.
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2.7. Linear Systems
Solve the following linear systems by substitution and by Gaussian elimination:

a)
x − 3y + 6z = −1

2x − 5y + 10z = 0
3x − 8y + 17z = 1

b)
x + y + z = 0

12x + 2y − 3z = 5
3x + 4y + z = −4





Chapter 3
The rank of a matrix

3.1 The rank of a matrix

Let A be any m× n matrix; that is, any rectangular table of numbers with m rows
and n columns. The rank of A is the number of pivot positions in A, and we write
rkA for the rank of A. There can not be more than one pivot position in a row or a
column, hence rkA≤ m and rkA≤ n.

Example 3.1. We compute the rank of the 3×3 matrix given by

A =

1 1 1
1 −1 1
1 2 4


The rank is equal to the number of pivot positions, so we compute an echelon
form of A to find the pivot positions:1 1 1

1 −1 1
1 2 4

 R2← R2 +(−1)R1
R3← R3 +(−1)R1

⇒

1 1 1
0 −2 0
0 1 3


R3← R3 +(1/2)R2

⇒

1 1 1
0 −2 0
0 0 3


Since A has three pivot positions, we have rkA = 3.

19



20 3 The rank of a matrix

Notice that we can compute the rank of any matrix, if the matrix is the augmented
matrix of a linear system or not. Also note that from the definition, the rank of the
m×n zero matrix is

rk0m×n = rk


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

= 0

(since it has no pivot positions), and this is the only type of matrix with rank zero.

3.2 Rank and solutions of linear systems

The following proposition is a convenient way of describing the solutions of a linear
system in terms of the pivot positions;

Proposition 3.1. Let A be the coefficient matrix and Â be the augmented matrix of
a linear system in n variables.

• The linear system is consistent if rkA = rk Â, and inconsistent otherwise.
• Assume that the linear system is consistent. Then the linear system have a unique

solution if rkA = n, and infinitely many solutions if rkA < n. In fact, the linear
system has n− rkA degrees of freedom.

The result is a reformulation of what we discovered in the previous chapter. In
fact, we must have rk Â = rkA or rk Â = rkA + 1. In the first case, all pivots of
the augmented matrix Â are also in A; that is, there is no pivot position in the last
column of Â. Moreover, we must have rkA = n or rkA < n, where n is the number
of variables. The number of basic variables is equal to the number of pivot columns
in A, or rkA. The rest of the variables are free variables; hence there are n− rkA free
variables.

3.3 Homogeneous linear systems

A homogeneous linear system is a linear system where all the constant terms are
zero. The general m×n homogeneous linear system has the form

a11x1 + a12x2 + . . . + a1nxn = 0
a21x1 + a22x2 + . . . + a2nxn = 0

...
...

...
...

am1x1 + am2x2 + . . . + amnxn = 0

where a11,a12, . . . ,amn are fixed numbers called parameters. Note that homogeneous
linear systems always have the solution (x1,x2, . . . ,xn) = (0,0, . . . ,0). This solution



3.3 Homogeneous linear systems 21

is called the trivial solution. Homogeneous linear systems are therefore consistent,
and there are only two possibilities for its solutions:

• There is a unique solution.
• There are infinitely many solutions.

In the first case, the unique solution is of course the trivial solution. In the second
case, there are (infinitely) many other solutions in addition to the trivial one, and
these are called non-trivial solutions.

Proposition 3.2. A homogeneous linear system in n variables with coefficient matrix
A has only the trivial solution if rkA = n, and it has non-trivial solutions if rkA < n.

Example 3.2. We solve the 3×3 homogeneous linear system given by

x + y + z = 0
x − y + z = 0
x + 2y + 4z = 0

⇒ A =

1 1 1
1 −1 1
1 2 4


In Example 3.1, we computed the rank of the coefficient matrix A to be rkA =
3. This means that rkA = n (since there are n = 3 variables), and the trivial
solution (x,y,z) = (0,0,0) is the only solution of this linear system.

Problems

3.1. Rank of a matrix I
Find the rank of the following matrices:

a)
(

1 2
8 16

)
b)

(
1 3 4
2 0 1

)
c)

 1 2 −1 3
2 4 −4 7
−1 −2 −1 −2


3.2. Rank of a matrix II
Find the rank of the following matrices:

(a)

1 3 0 0
2 4 0 −1
1 −1 2 2

 b)

 2 1 3 7
−1 4 3 1
3 2 5 11

 c)


1 −2 −1 1
2 1 1 2
−1 1 −1 −3
−2 −5 −2 0


3.3. Homogeneous linear systems
Prove that any 4×6 homogeneous linear system has non-trivial solutions.
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3.4. Linear system with parameters
Discuss the ranks of the coefficient matrix A and the augmented matrix Â of the
linear system

x1 + x2 + x3 = 2q
2x1 − 3x2 + 2x3 = 4q
3x1 − 2x2 + px3 = q

for all values of p and q. Use this to determine the number of solutions of the linear
system for all values of p and q.

3.5. Midterm Exam in GRA6035 24/09/2010, Problem 3
Compute the rank of the matrix

A =

2 5 −3 −4 8
4 7 −4 −3 9
6 9 −5 −2 4


3.6. Mock Midterm Exam in GRA6035 09/2010, Problem 3
Compute the rank of the matrix

A =


1 2 −5 0 −1
2 5 −8 4 3
−3 −9 9 −7 −2
3 10 −7 11 7


3.7. Midterm Exam in GRA6035 24/05/2011, Problem 3
Compute the rank of the matrix

A =

2 10 6 8
1 5 4 11
3 15 7 −2


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Problems of Chapter 1

1.1 Net cost of charity donation
Without any charity donation, the state and federal tax would be given by the first
two equations in Example 1.2 with C = 0:

S = 5000
0.40S + F = 40,000

We solve the first equation and get S = 5,000. Then we substitute this value for S in
the second equation and get F = 40,000− 0.40(5,000) = 38,000. Therefore, that
state and federal tax i S = 5,000, F = 38,000. The profit net of taxes would in this
case be

100,000−5,000−38,000 = 57,000

When a charity contribution is made as in Example 1.2, the profit net of taxes and
donation are

100,000−4,207−35,737−5,956 = 53,605

The net profit is reduced by 3,395 when the donation is made. Therefore, the net
cost of the donation of $5,956 is $3,395.

1.2 From linear system to augmented matrix
The coefficient matrix and the augmented matrix of the system is given by

a)
(

2 5
3 −7

)
,

(
2 5 6
3 −7 4

)
b)

1 1 −1
1 −1 1
1 −2 4

 ,

1 1 −1 0
1 −1 1 2
1 −2 4 3



23
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1.3 From augmented matrix to linear system
The linear system is given by

x + 2y = 4
2x − 3y + z = 0
7x + 4y + z = 3

1.4 Solution by substitution
We solve the linear system

x + y + z = 1
x − y + z = 4
x + 2y + 4z = 7

by substitution. First, we solve the first equation for z and get z = 1− x− y. Then
we substitute this expression for z in the last two equations. We get

− 2y = 3
−3x − 2y = 3

We solve the first equation for y, and get y =−1.5. Then we substitute this value for
y in the second equation, and get x = 0. Finally, we substitute both these values in
z = 1− x− y and get z = 2.5. The solution is therefore x = 0, y =−1.5, z = 2.5.

1.5 Variation of parameters by substitution
We solve the linear system

x + y + z = 1
x − y + z = 4
x + 2y + z = h

by substitution. First, we solve the first equation for z and get z = 1− x− y. Then
we substitute this expression for z in the last two equations. We get

− 2y = 3
y = h−1

We solve the first equation for y, and get y = −1.5. Then we substitute this value
for y in the second equation, and get −1.5 = h−1. If h = −0.5, this holds and the
system have solutions (x is a free variable, y = −1.5 and z = 1− x− y = 2.5− x).
If h 6= −0.5, then this leads to a contradiction and the system have no solutions.
Therefore, the linear system have solutions if and only if h =−0.5.
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Problems of Chapter 2

General remark: In some of the problems, we compute an echelon form. Since the
echelon form is not unique, it is possible to get to another echelon form than the one
indicated in the solutions below. However, the pivot positions should be the same.

2.1 Gaussian elimination I
The linear systems have the following augmented matrices:

a)

1 1 1 1
1 −1 1 4
1 2 4 7

 b)

2 2 −1 2
1 1 1 −2
2 4 −3 0


a) To solve the system, we reduce the system to an echelon form using elementary
row operations. The row operations are indicated.1 1 1 1

1 −1 1 4
1 2 4 7

 R2← R2 +(−1)R1
R3← R3 +(−1)R1

⇒

1 1 1 1
0 −2 0 3
0 1 3 6


R3← R3 +(0.5)R2

⇒

1 1 1 1
0 −2 0 3
0 0 3 7.5


From the last equation we get z = 2.5, substitution in the second equation gives
y = −1.5, and substitution in the first equation gives x = 0. Therefore, the solution
of a) is x = 0, y =−1.5, z = 2.5.
b) To solve the system, we reduce the system to an echelon form using elementary
row operations. The row operations are indicated.2 2 −1 2

1 1 1 −2
2 4 −3 0

 R2← R2 +(−0.5)R1
R3← R3 +(−1)R1

⇒

2 2 −1 2
0 0 1.5 −3
0 2 −2 −2

 R2← R3
R3← R2

⇒

2 2 −1 2
0 2 −2 −2
0 0 1.5 −3


From the last equation we get z = −2, substitution in the second equation gives
y =−3, and substitution in the first equation gives x = 3. Therefore, the solution of
b) is x = 3, y =−3, z =−2.
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2.2 Gauss-Jordan elimination
We reduce the system to the reduced echelon form using elementary row operations:1 1 1 1

1 −1 1 4
1 2 4 7

 R2← R2 +(−1)R1
R3← R3 +(−1)R1

⇒

1 1 1 1
0 −2 0 3
0 1 3 6


R3← R3 +(0.5)R2

⇒

1 1 1 1
0 −2 0 3
0 0 3 7.5

 R2← (−1/2) ·R2
R3← (1/3) ·R3

⇒

1 1 1 1
0 1 0 −1.5
0 0 1 2.5

 R1← R1 +(−1)R2 +(−1)R3

⇒

1 0 0 0
0 1 0 −1.5
0 0 1 2.5


We read off the solution of the system: x = 0, y =−1.5, z = 2.5.

2.3 Gaussian elimination II
a) We reduce the linear system to an echelon form:(

−4 6 4 4
2 −1 1 1

)
⇒

(
−4 6 4 4
0 2 3 3

)
We see that the system has infinitely many solutions (z is a free variable and x,y are
basic variables). We reduce the system to a reduced echelon form:(

−4 6 4 4
0 2 3 3

)
⇒

(
1 −1.5 −1 −1
0 1 1.5 1.5

)
⇒

(
1 0 1.25 1.25
0 1 1.5 1.5

)
We see that x+ 1.25z = 1.25, y+ 1.5z = 1.5. Therefore the solution is given by
x = 1.25−1.25z, y = 1.5−1.5z (z is a free variable).
b) We reduce the linear system to an echelon form: 6 1 7

3 1 4
−6 −2 1

 ⇒

6 1 7
0 0.5 0.5
0 −1 8

 ⇒

6 1 7
0 0.5 0.5
0 0 9


We see that the system has no solutions.
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2.4 Variation of parameters
We find the augmented matrix of the linear system and reduce it to an echelon form: 1 2 3 1

−1 a −21 2
3 7 a b

 ⇒

1 2 3 1
0 a+2 −18 3
0 1 a−9 b−3


We interchange the last two rows to avoid division with a+2:1 2 3 1

0 1 a−9 b−3
0 a+2 −18 3

 ⇒

1 2 3 1
0 1 a−9 b−3
0 0 −18− (a−9)(a+2) 3− (b−3)(a+2)


We compute −18− (a−9)(a+2) = 7a−a2. So when a 6= 0 and a 6= 7, the system
has a unique solution. When a = 0, we compute 3− (b− 3)(a+ 2) = 9− 2b. So
when a = 0 and b 6= 9/2, the system is inconsistent, and when a = 0, b = 9/2,
the system has infinitely many solutions (one degree of freedom). When a = 7, we
compute 3− (b− 3)(a+ 2) = 30− 9b. So when a = 7 and b 6= 30/9 = 10/3, the
system is inconsistent, and when a = 7, b = 10/3, the system has infinitely many
solutions (one degree of freedom).

2.5 Pivot positions
We redude the matrix to an echelon form using row elementary row operations: 1 3 4 1 7

3 2 1 0 7
−1 3 2 4 9

 ⇒

1 3 4 1 7
0 −7 −11 −3 −14
0 6 6 5 16

 ⇒

1 3 4 1 7
0 −7 −11 −3 −14
0 0 −24/7 ∗ ∗


We have not computed the entries marked ∗ since they are not needed to find the
pivot positions. The pivot positions in the matrix are marked with a box: 1 3 4 1 7

3 2 1 0 7
−1 3 2 4 9


2.6 Basic and free variables
We find the augmented matrix and reduce it to an echelon form using elementary
row operations:1 6 −7 3 1

1 9 −6 4 2
1 3 −8 4 5

 ⇒

1 6 −7 3 1
0 3 1 1 1
0 −3 −1 1 4

 ⇒

1 6 −7 3 1
0 3 1 1 1
0 0 0 2 5


We see that the system has infinitely many solutions and one degree of freedom (z
is a free variable and x,y,w are basic variables). To express x,y,w in terms of z, we
find the reduced echelon form:
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0 3 1 1 1
0 0 0 2 5

 ⇒

1 6 −7 3 1
0 1 1/3 1/3 1/3
0 0 0 1 5/2

 ⇒

1 0 −9 0 −7/2
0 1 1/3 0 −1/2
0 0 0 1 5/2


We see that x− 9z = −7/2, y + z/3 = −1/2 and w = 5/2. This means that the
solution is given by x = 9z−7/2, y =−z/3−1/2, w = 5/2 (z is a free variable).

2.7 Linear Systems
a) We find the augmented matrix of the linear system and reduce it to an echelon
form: 1 −3 6 −1

2 −5 10 0
3 −8 17 1

 ⇒

1 −3 6 −1
0 1 −2 2
0 0 1 2


Back substitution gives the solution x = 5, y = 6, z = 2.
b) We find the augmented matrix of the linear system and reduce it to an echelon
form:  1 1 1 0

12 2 −3 5
3 4 1 −4

 ⇒

1 1 1 0
0 1 −2 −4
0 0 −35 −35


Back substitution gives the solution x = 1, y =−2, z = 1.

Problems of Chapter 3

3.1 Rank of a matrix I
a) We find an echelon form of the matrix:(

1 2
8 16

)
⇒

(
1 2
0 0

)
We see that the rank of A is 1 since there is one pivot position.
b) We find an echelon form of the matrix:(

1 3 4
2 0 1

)
⇒

(
1 3 4
0 −6 −7

)
We see that the rank of A is 2 since there are two pivot positions.
c) We find an echelon form of the matrix: 1 2 −1 3

2 4 −4 7
−1 −2 −1 −2

 ⇒

1 2 −1 3
0 0 −2 1
0 0 −2 1

 ⇒

1 2 −1 3
0 0 −2 1
0 0 0 0


We see that the rank of A is 2 since there are two pivot positions.
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3.2 Rank of a matrix II
a) We find an echelon form of the matrix:1 3 0 0

2 4 0 −1
1 −1 2 2

 ⇒

1 3 0 0
0 −2 0 −1
0 −4 2 2

 ⇒

1 3 0 0
0 −2 0 −1
0 0 2 4


We see that the rank of A is 3 by counting pivot positions.
b) We find an echelon form of the matrix: 2 1 3 7

−1 4 3 1
3 2 5 11

 ⇒

2 1 3 7
0 4.5 4.5 4.5
0 0.5 0.5 0.5

 ⇒

2 1 3 7
0 4.5 4.5 4.5
0 0 0 0


We see that the rank of A is 2 by counting pivot positions.
c) We find an echelon form of the matrix:

1 −2 −1 1
2 1 1 2
−1 1 −1 −3
−2 −5 −2 0

 ⇒


1 −2 −1 1
0 5 3 0
0 −1 −2 −2
0 −9 −4 2


We interchange the two middle rows to get easier computations:

1 −2 −1 1
0 −1 −2 −2
0 5 3 0
0 −9 −4 2

 ⇒


1 −2 −1 1
0 −1 −2 −2
0 0 −7 −10
0 0 14 20

 ⇒


1 −2 −1 1
0 −1 −2 −2
0 0 −7 −10
0 0 0 0


We see that the rank of A is 3 by counting pivot positions. T

3.3 Homogeneous linear systems
Let A be the 4×6 coefficient matrix of the homogeneous linear system. Then n = 6
(there are 6 variables) while rkA≤ 4 (there cannot be more than one pivot position
in each row). So there are at least two degrees of freedom, and the system has non-
trivial solutions.

3.4 Linear system with parameters
We find the coefficient matrix A and the augmented matrix Â of the system:

A =

1 1 1
2 −3 2
3 −2 p

 , Â =

1 1 1 2q
2 −3 2 4q
3 −2 p q


Then we compute an echelon form of Â (which contains an echelon form of A as the
first three columns):
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Â =

1 1 1 2q
2 −3 2 4q
3 −2 p q

 ⇒

1 1 1 2q
0 −5 0 0
0 0 p−3 −5q


By counting pivot positions, we see that the ranks are given by

rkA =

{
3 p 6= 3
2 p = 3

rk Â =

{
3 p 6= 3 or q 6= 0
2 p = 3 and q = 0

The linear system has one solution if p 6= 3, no solutions if p = 3 and q 6= 0, and
infinitely many solutions (one degree of freedom) if p = 3 and q = 0.

3.5 Midterm Exam in GRA6035 24/09/2010, Problem 3
We compute an echelon form of A using elementary row operations, and get

A =

2 5 −3 −4 8
4 7 −4 −3 9
6 9 −5 −2 4

 99K

2 5 −3 −4 8
0 −3 2 5 7
0 0 0 0 −6


Hence A has rank 3.

3.6 Mock Midterm Exam in GRA6035 09/2010, Problem 3
We compute an echelon form of A using elementary row operations, and get

A =


1 2 −5 0 −1
2 5 −8 4 3
−3 −9 9 −7 −2
3 10 −7 11 7

 99K


1 2 −5 0 −1
0 1 2 4 5
0 0 0 5 10
0 0 0 0 0


Hence A has rank 3.

3.7 Midterm Exam in GRA6035 24/05/2011, Problem 3
We compute an echelon form of A using elementary row operations, and get

A =

2 10 6 8
1 5 4 11
3 15 7 −2

 99K

1 5 4 11
0 0 1 7
0 0 0 0


Hence A has rank 2.
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